Commit e13e9135 authored by Sushant Mahajan's avatar Sushant Mahajan

completed first impl of the model

parent c6d699cc
Pipeline #276 skipped
...@@ -4,6 +4,9 @@ import os ...@@ -4,6 +4,9 @@ import os
import csv import csv
from random import random from random import random
from pprint import pprint as pp from pprint import pprint as pp
from math import log, exp
from functools import reduce
import numpy as np
params = {"layers":[57, int(57/2), 1], "test":"TestX.csv", "train":"Train.csv"} params = {"layers":[57, int(57/2), 1], "test":"TestX.csv", "train":"Train.csv"}
...@@ -26,36 +29,72 @@ def getData(srcF, isTrain=True, addBias=True): ...@@ -26,36 +29,72 @@ def getData(srcF, isTrain=True, addBias=True):
return (X,y) return (X,y)
def getMatrix(r, c, vec): def sigmoid(v):
mat = [] return 1.0/(1+exp(-v))
for i in range(r):
temp = []
for j in range(c):
idx = i*(c)+j
temp.append(vec[j])
mat.append(temp)
return mat def sigmoidGradient(v):
return [a*b for a,b in zip([sigmoid(x) for x in v], [sigmoid(x) for x in v])]
def regularization(cost, w1, w2, lamb, m):
reg = sum(w1*w1)+sum(w2*w2)
reg = reg*lamb/(2*m)
return cost+reg
def gradient(del1, del2, w1, w2, lamb, m):
del1,del2 = del1/m, del2/m
tgrad1 = del1[:,1:] + lamb*w1[:,1:]/m
tgrad2 = del2[:,1:] + lamb*w2[:,1:]/m
return np.append(tgrad1.reshape(tgrad1.size), tgrad2.reshape(tgrad2.size))
def cost(li, lh, lo, weights, X, y): def cost(li, lh, lo, weights, X, y, lamb):
w1t = weights[:(li+1)*lh] #28x58 w1t = weights[:(li+1)*lh] #28x58
w2t = weights[(li+1)*lh:] #1x29 w2t = weights[(li+1)*lh:] #1x29
#28x58, 1x29
w1,w2 = getMatrix(lh, li+1, w1t), getMatrix(lo, lh+1, w2t) tdel1,tdel2 = np.zeros((lh,li+1),dtype=float), np.zeros((lo,lh+1),dtype=float)
#w1,w2 = getMatrix(lh, li+1, w1t), getMatrix(lo, lh+1, w2t)
w1 = np.array(w1t)
w2 = np.array(w2t)
#cost
m = len(X)
J = 0.0
for i in range(m):
a1 = X[i] #1x58
z2 = np.dot(w1.reshape((lh,li+1)), a1) #28x58 * 58x1 = 28x1
a2 = [1.0] #bias for hidden
a2.extend([sigmoid(x) for x in z2]) #29x1
z3 = np.dot(w2.reshape((lo,lh+1)), a2) #1x29 *29x1 = 1x1
z3 = z3[0]
h = sigmoid(z3)
# J += -y[i]*log(fw) - (1-y[i])*log(1-fw)
#backpropagation
del3 = h-y[i] #1x1
z2 = [1]+z2.tolist() #29x1
del2 = w2.reshape((lo,lh+1))*del3*np.array(sigmoidGradient(z2)).reshape((1,29)) #1x29 x 1x1 x 1x29 = 1x29
del2 = del2.reshape(lh+1,lo).tolist()
del(del2[0]) #28x1
tdel1 = np.dot(np.array(del2).reshape(lh,lo),np.array(a1).reshape(lo,li+1))+tdel1 #28x1 x 1x58
tdel2 = np.multiply(np.array(a2).reshape((lo,lh+1)), del3)+tdel2 #1x29 * 1x1 + 1x29 = 1x29
J += y[i]*log(h) + (1-y[i])*log(1-h)
J = -J/m
#regularization
J = regularization(J, w1, w2, lamb, m)
#calculate gradient
grad = gradient(tdel1, tdel2, w1.reshape((lh,li+1)), w2.reshape((lo,lh+1)), lamb, m)
return J,grad
if __name__ == "__main__": if __name__ == "__main__":
X,y = getData(params["train"]) X,y = getData(params["train"])
# tX,ty = getData(params["test"], isTrain=False) # tX,ty = getData(params["test"], isTrain=False)
print(len(X), len(X[0]), len(y), X[0]) # print(len(X), len(X[0]), len(y), X[0])
# print(len(tX), len(ty), tX[0])
li,lh,lo = tuple(params["layers"]) li,lh,lo = tuple(params["layers"])
weights = [random() for _ in range(lh*(li+1)+lo*(lh+1))] weights = [random() for _ in range(lh*(li+1)+lo*(lh+1))]
w1,w2 = cost(li, lh, lo, weights, X, y) J,grad = cost(li, lh, lo, weights, X, y, 0.1)
print(J,grad)
#print(len(w1), len(w1[0]), len(w2), len(w2[0])) #print(len(w1), len(w1[0]), len(w2), len(w2[0]))
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment