Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mlassign2
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sushant Mahajan
mlassign2
Commits
bf87ab8c
Commit
bf87ab8c
authored
Apr 10, 2016
by
Sushant Mahajan
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
modified model and corrected loss calculation
parent
c90c56f0
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1805 additions
and
11 deletions
+1805
-11
answer.txt
answer.txt
+1601
-0
model.py
model.py
+43
-11
model2.py
model2.py
+161
-0
No files found.
answer.txt
0 → 100644
View file @
bf87ab8c
This diff is collapsed.
Click to expand it.
model.py
View file @
bf87ab8c
...
...
@@ -2,7 +2,7 @@
import
sys
import
os
import
csv
from
random
import
random
from
random
import
seed
,
random
from
pprint
import
pprint
as
pp
from
math
import
log
,
exp
import
numpy
as
np
...
...
@@ -45,7 +45,7 @@ def sigmoid(v):
return
1.0
/
(
1
+
exp
(
-
v
))
def
sigmoidGradient
(
v
):
return
[
a
*
b
for
a
,
b
in
zip
([
sigmoid
(
x
)
for
x
in
v
],
[
sigmoid
(
x
)
for
x
in
v
])]
return
[
a
*
b
for
a
,
b
in
zip
([
sigmoid
(
x
)
for
x
in
v
],
[
1
-
sigmoid
(
x
)
for
x
in
v
])]
def
regularization
(
cost
,
w1
,
w2
,
lamb
,
m
):
reg
=
sum
(
w1
*
w1
)
+
sum
(
w2
*
w2
)
...
...
@@ -104,34 +104,66 @@ def cost(li, lh, lo, weights, X, y, lamb):
return
J
,
grad
def
fit
(
X
,
y
,
li
,
lh
,
lo
,
weights
,
lamb
,
eta
,
passes
=
10000
,
verbose
=
True
):
def
fit
(
X
,
y
,
li
,
lh
,
lo
,
weight
,
lamb
,
eta
,
passes
=
1000
,
verbose
=
True
):
weights
=
np
.
copy
(
weight
)
for
i
in
range
(
1
,
passes
+
1
):
J
,
dw
=
cost
(
li
,
lh
,
lo
,
weights
,
X
,
y
,
lamb
)
#print(weights.shape, dw.shape)
weights
+=
-
eta
*
dw
print
(
i
,
"
\r
"
,
end
=
''
)
if
verbose
and
i
%
1000
==
0
:
if
verbose
and
i
%
(
passes
/
10
)
==
0
:
print
()
print
(
J
)
return
weights
def
predict
(
x
,
w1
,
w2
):
x
=
[
1
]
+
x
#58x1
#x=[1]+x #58x1
x
=
np
.
array
(
x
)
h1
=
sigmoid
(
np
.
dot
(
w1
,
x
)
.
tolist
())
#28x58 * 58x1 = 28x1
h1
=
[
sigmoid
(
z
)
for
z
in
np
.
dot
(
w1
,
x
)
.
tolist
()]
#28x58 * 58x1 = 28x1
h1
=
[
1
]
+
h1
h2
=
sigmoid
(
np
.
dot
(
w2
,
h1
)
.
tolist
())
#1x29 * 29x1 = 1x1
return
1
if
h2
>
0.5
else
0
h2
=
sigmoid
(
np
.
dot
(
w2
,
h1
)
.
tolist
()[
0
])
#1x29 * 29x1 = 1x1
return
h2
def
setWeightsFromFile
(
weights
):
if
os
.
path
.
isfile
(
"weights"
):
with
open
(
"weights"
,
"rb"
)
as
wfile
:
weights
=
np
.
load
(
wfile
)
return
True
return
False
if
__name__
==
"__main__"
:
np
.
random
.
rand
(
47
)
X
,
y
=
getData
(
params
[
"train"
])
tX
,
ty
=
getData
(
params
[
"test"
],
isTrain
=
False
)
# print(len(X), len(X[0]), len(y), X[0])
# print(len(tX), len(ty), tX[0])
li
,
lh
,
lo
=
tuple
(
params
[
"layers"
])
weights
=
np
.
array
([
random
()
for
_
in
range
(
lh
*
(
li
+
1
)
+
lo
*
(
lh
+
1
))]
)
weights
=
np
.
random
.
rand
(
lh
*
(
li
+
1
)
+
lo
*
(
lh
+
1
)
)
lamb
,
eta
=
0.1
,
0.1
fit
(
X
,
y
,
li
,
lh
,
lo
,
weights
,
lamb
,
eta
)
if
not
setWeightsFromFile
(
weights
):
weights
=
fit
(
X
,
y
,
li
,
lh
,
lo
,
weights
,
lamb
,
eta
,
passes
=
300
)
with
open
(
"weights"
,
"wb"
)
as
wfile
:
np
.
save
(
wfile
,
weights
)
w1
=
weights
[:(
li
+
1
)
*
lh
]
.
reshape
(
lh
,
li
+
1
)
#28x58
w2
=
weights
[(
li
+
1
)
*
lh
:]
.
reshape
(
lo
,
lh
+
1
)
#1x29
py
=
[]
for
x
in
X
:
py
.
append
(
predict
(
x
,
w1
,
w2
))
print
(
py
)
# print("train accuracy", len(list(filter(lambda z:z==0,[a-b for a,b in zip(py,y)])))*1.0/len(y))
# pty = []
# for x in tX:
# pty.append(predict(x,w1,w2))
# with open("answer.txt","w") as dest:
# writer = csv.writer(dest)
# for i,ans in enumerate(pty):
# writer.writerow([i,ans])
# J,grad = cost(li, lh, lo, weights, X, y, 0.1)
# print(J,grad)
#print(len(w1), len(w1[0]), len(w2), len(w2[0]))
\ No newline at end of file
model2.py
0 → 100644
View file @
bf87ab8c
#! /usr/bin/env python3
import
sys
import
os
import
csv
from
random
import
seed
,
random
from
pprint
import
pprint
as
pp
from
math
import
log
,
exp
import
numpy
as
np
def
doNormalize
(
X
):
#do 0 mean 1 std normalization
x1
=
np
.
array
(
X
,
dtype
=
float
)
for
i
in
range
(
len
(
X
[
0
])):
col
=
x1
[:,
i
]
mean
,
std
=
col
.
mean
(),
col
.
std
()
std
=
std
if
std
!=
0.0
else
1.0
x1
[:,
i
]
=
(
x1
[:,
i
]
-
mean
)
/
std
return
x1
.
tolist
()
def
getData
(
srcF
,
isTrain
=
True
,
addBias
=
True
,
normalize
=
True
):
X
,
y
=
[],[]
with
open
(
srcF
)
as
src
:
reader
=
csv
.
reader
(
src
,
delimiter
=
','
)
for
i
,
row
in
enumerate
(
reader
):
temp
=
[]
if
addBias
:
temp
.
append
(
1
)
end
=
-
1
if
isTrain
else
len
(
row
)
temp
.
extend
(
row
[:
end
])
#correct data type
X
.
append
(
list
(
map
(
float
,
temp
)))
if
isTrain
:
v
=
int
(
row
[
-
1
])
entry
=
[
1
,
0
]
if
v
==
1
else
[
0
,
1
]
y
.
append
(
entry
)
if
normalize
:
X
=
doNormalize
(
X
)
#print(X[0])
return
(
np
.
array
(
X
),
np
.
array
(
y
))
def
sigmoid
(
v
):
return
1.0
/
(
1
+
np
.
exp
(
-
v
))
def
sigmoidDiff
(
v
):
return
sigmoid
(
v
)
*
(
1
-
sigmoid
(
v
))
def
feedforward
(
model
,
X
):
w1
,
w2
=
model
[
'w1'
],
model
[
'w2'
]
#58x28, 29x2
z1
=
X
.
dot
(
w1
)
#mx58 * 58x28 = mx28
a1
=
sigmoid
(
z1
)
#mx28
a1
=
np
.
insert
(
a1
,
0
,
np
.
ones
(
a1
.
shape
[
0
]),
axis
=
1
)
#mx29
z2
=
a1
.
dot
(
w2
)
#mx29 * 29x2
h
=
sigmoid
(
z2
)
#mx2
return
h
def
restrictProb
(
a
):
return
min
([
max
([
a
,
1e-15
]),
1
-
1e-15
])
def
cost
(
model
,
X
,
y
):
m
=
X
.
shape
[
0
]
h
=
feedforward
(
model
,
X
)
y2
=
y
.
astype
(
float
)
vf
=
np
.
vectorize
(
restrictProb
)
py
=
vf
(
h
)
loss
=
-
(
1.0
/
m
)
*
np
.
sum
(
y
*
np
.
log
(
py
)
+
(
1
-
y
)
*
np
.
log
(
1
-
py
))
#mx2 .* mx2
#regularize
w1
,
w2
=
model
[
'w1'
],
model
[
'w2'
]
loss
+=
model
[
'lambda'
]
*
(
np
.
sum
(
np
.
square
(
w1
))
+
np
.
sum
(
np
.
square
(
w2
)))
/
(
2
*
m
)
return
loss
def
predict
(
model
,
x
):
w1
,
w2
=
model
[
'w1'
],
model
[
'w2'
]
#print(x.shape, w1.shape)
z1
=
x
.
dot
(
w1
)
#1x58 * 58x28 = 1x28
a1
=
sigmoid
(
z1
)
#1x28
a1
=
np
.
insert
(
a1
,
0
,
1
)
z2
=
a1
.
dot
(
w2
)
#1x29 x 29x2
h
=
sigmoid
(
z2
)
return
1
-
np
.
argmax
(
h
)
def
fit
(
model
,
X
,
y
,
passes
=
1000
):
m
=
X
.
shape
[
0
]
w1
,
w2
=
model
[
'w1'
],
model
[
'w2'
]
#58x28, 29x2
li
,
lh
,
lo
=
model
[
'li'
],
model
[
'lh'
],
model
[
'lo'
]
for
i
in
range
(
passes
):
z1
=
X
.
dot
(
w1
)
#mx58 * 58x28 = mx28
a2
=
sigmoid
(
z1
)
#mx28
a2
=
np
.
insert
(
a2
,
0
,
np
.
ones
(
a2
.
shape
[
0
]),
axis
=
1
)
#mx29
z2
=
a2
.
dot
(
w2
)
#mx29 * 29x2
h
=
sigmoid
(
z2
)
#mx2
#backpropagation
del3
=
h
-
y
#mx2
z1
=
np
.
insert
(
z1
,
0
,
np
.
ones
(
z1
.
shape
[
0
]),
axis
=
1
)
#mx29
del2
=
del3
.
dot
(
w2
.
reshape
(
lo
,
lh
+
1
))
*
sigmoidDiff
(
z1
)
#mx2 * 2x29 .* mx29 = mx29
del2
=
del2
[:,
1
:]
#mx28
dw1
=
np
.
dot
(
X
.
T
,
del2
)
#58xm*mx28=58x28
dw2
=
(
a2
.
T
)
.
dot
(
del3
)
#29xm*mx2=29x2
dw1
+=
(
model
[
'lambda'
]
/
m
)
*
w1
dw2
+=
(
model
[
'lambda'
]
/
m
)
*
w2
w1
+=
-
model
[
'eta'
]
*
dw1
w2
+=
-
model
[
'eta'
]
*
dw2
model
[
'w1'
]
=
w1
model
[
'w2'
]
=
w2
if
i
%
(
passes
/
10
)
==
0
:
print
(
i
,
cost
(
model
,
X
,
y
))
return
model
if
__name__
==
"__main__"
:
np
.
random
.
seed
(
47
)
model
=
{}
model
=
{
'li'
:
57
,
'lh'
:
85
,
'lo'
:
2
,
'lambda'
:
0.05
,
'eta'
:
0.01
}
# model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28
# model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2
model
[
'w1'
]
=
np
.
random
.
rand
(
model
[
'li'
]
+
1
,
model
[
'lh'
])
*
0.24
-
0.12
model
[
'w2'
]
=
np
.
random
.
rand
(
model
[
'lh'
]
+
1
,
model
[
'lo'
])
*
0.24
-
0.12
X
,
y
=
getData
(
"Train.csv"
)
tX
,
ty
=
getData
(
"TestX.csv"
,
isTrain
=
False
)
#cost(model, X, y)
# for h in [57/3, 57/2, 2*57/3, 57, 3*57/2]:
# h=int(h)
# model = {'li':57,'lh':h,'lo':2,'lambda':0.1,'eta':0.1}
# model['w1'] = np.random.randn(model['li']+1, model['lh'])/np.sqrt(model['li']+1) #58x28
# model['w2'] = np.random.randn(model['lh']+1, model['lo'])/np.sqrt(model['lh']+1) #29x2
model
=
fit
(
model
,
X
,
y
)
m
=
X
.
shape
[
0
]
py
,
y2
=
[],[]
for
i
,
row
in
enumerate
(
tX
):
ans
=
predict
(
model
,
np
.
array
(
row
))
py
.
append
(
ans
)
# y2.append(1 if y[i][0]==1 else 0)
# acc = m-np.sum(abs(np.array(py)-np.array(y2)))
# print(h, acc*100/m)
with
open
(
"answer.txt"
,
"w"
)
as
wfile
:
writer
=
csv
.
writer
(
wfile
)
writer
.
writerow
([
'Id'
,
'Label'
])
for
i
,
ans
in
enumerate
(
py
):
writer
.
writerow
([
i
,
ans
])
# acc = m-np.sum(abs(np.array(py)-np.array(y2)))
# print(acc*100/m)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment