Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
ML725
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Analytics
Analytics
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Commits
Open sidebar
SHREYANSH JAIN
ML725
Commits
bbf7342c
Commit
bbf7342c
authored
Sep 07, 2019
by
SHREYANSH JAIN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added mean square gradient
parent
e0cb7c11
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
11555 additions
and
48 deletions
+11555
-48
Assignment1/error.log
Assignment1/error.log
+8000
-0
Assignment1/main.py
Assignment1/main.py
+40
-48
Assignment1/output.csv
Assignment1/output.csv
+3515
-0
No files found.
Assignment1/error.log
0 → 100644
View file @
bbf7342c
This diff is collapsed.
Click to expand it.
Assignment1/main.py
View file @
bbf7342c
import
numpy
as
np
import
numpy
as
np
import
argparse
import
argparse
import
csv
import
csv
import
matplotlib.pyplot
as
plt
'''
'''
You are only required to fill the following functions
You are only required to fill the following functions
mean_squared_loss
mean_squared_loss
...
@@ -21,22 +21,19 @@ Don't modify function declaration (arguments)
...
@@ -21,22 +21,19 @@ Don't modify function declaration (arguments)
'''
'''
def
mean_squared_loss
(
xdata
,
ydata
,
weights
):
def
mean_squared_loss
(
xdata
,
ydata
,
weights
):
'''
weights = weight vector [D X 1]
guess
=
np
.
dot
(
xdata
,
weights
)
xdata = input feature matrix [N X D]
samples
=
np
.
shape
(
guess
)[
0
]
ydata = output values [N X 1]
err
=
0.5
*
samples
*
np
.
sum
(
np
.
square
(
ydata
.
T
-
guess
))
Return the mean squared loss
return
err
'''
raise
NotImplementedError
raise
NotImplementedError
def
mean_squared_gradient
(
xdata
,
ydata
,
weights
):
def
mean_squared_gradient
(
xdata
,
ydata
,
weights
):
'''
weights = weight vector [D X 1]
samples
=
np
.
shape
(
xdata
)[
0
]
xdata = input feature matrix [N X D]
guess
=
np
.
dot
(
xdata
,
weights
)
ydata = output values [N X 1]
gradient
=
(
1
/
samples
)
*
np
.
dot
(
xdata
.
T
,(
guess
-
ydata
.
T
))
Return the mean squared gradient
return
gradient
'''
raise
NotImplementedError
raise
NotImplementedError
...
@@ -68,29 +65,25 @@ class LinearRegressor:
...
@@ -68,29 +65,25 @@ class LinearRegressor:
def
__init__
(
self
,
dims
):
def
__init__
(
self
,
dims
):
# dims is the number of the feature
s
self
.
dims
=
dim
s
# You can use __init__ to initialise your weight and biases
self
.
W
=
np
.
zeros
(
dims
)
# Create all class related variables here
return
raise
NotImplementedError
raise
NotImplementedError
def
train
(
self
,
xtrain
,
ytrain
,
loss_function
,
gradient_function
,
epoch
=
100
,
lr
=
1.0
):
def
train
(
self
,
xtrain
,
ytrain
,
loss_function
,
gradient_function
,
epoch
=
100
,
lr
=
1
):
'''
errlog
=
[]
xtrain = input feature matrix [N X D]
samples
=
np
.
shape
(
xtrain
)[
0
]
ytrain = output values [N X 1]
for
iterations
in
range
(
epoch
):
learn weight vector [D X 1]
self
.
W
=
self
.
W
-
lr
*
gradient_function
(
xtrain
,
ytrain
,
self
.
W
)
epoch = scalar parameter epoch
errlog
.
append
(
loss_function
(
xtrain
,
ytrain
,
self
.
W
))
lr = scalar parameter learning rate
return
errlog
loss_function = loss function name for linear regression training
gradient_function = gradient name of loss function
'''
# You need to write the training loop to update weights here
raise
NotImplementedError
raise
NotImplementedError
def
predict
(
self
,
xtest
):
def
predict
(
self
,
xtest
):
# This returns your prediction on xtest
# This returns your prediction on xtest
return
np
.
dot
(
xtest
,
self
.
W
)
raise
NotImplementedError
raise
NotImplementedError
...
@@ -120,18 +113,14 @@ def read_dataset(trainfile, testfile):
...
@@ -120,18 +113,14 @@ def read_dataset(trainfile, testfile):
return
np
.
array
(
xtrain
),
np
.
array
(
ytrain
),
np
.
array
(
xtest
)
return
np
.
array
(
xtrain
),
np
.
array
(
ytrain
),
np
.
array
(
xtest
)
def
preprocess_dataset
(
xdata
,
ydata
=
None
):
def
preprocess_dataset
(
xdata
,
ydata
=
None
):
'''
xdata
=
xdata
[:,[
2
,
3
,
4
,
7
,
9
]]
xdata = input feature matrix [N X D]
xdata
=
xdata
.
astype
(
'float32'
)
ydata = output values [N X 1]
bias
=
np
.
ones
((
np
.
shape
(
xdata
)[
0
],
1
))
Convert data xdata, ydata obtained from read_dataset() to a usable format by loss function
xdata
=
np
.
concatenate
((
bias
,
xdata
),
axis
=
1
)
if
ydata
is
None
:
The ydata argument is optional so this function must work for the both the calls
return
xdata
xtrain_processed, ytrain_processed = preprocess_dataset(xtrain,ytrain)
ydata
=
ydata
.
astype
(
'float32'
)
xtest_processed = preprocess_dataset(xtest)
return
xdata
,
ydata
NOTE: You can ignore/drop few columns. You can feature scale the input data before processing further.
'''
raise
NotImplementedError
raise
NotImplementedError
dictionary_of_losses
=
{
dictionary_of_losses
=
{
...
@@ -147,17 +136,20 @@ def main():
...
@@ -147,17 +136,20 @@ def main():
# Uncomment the below lines and pass the appropriate value
# Uncomment the below lines and pass the appropriate value
xtrain
,
ytrain
,
xtest
=
read_dataset
(
args
.
train_file
,
args
.
test_file
)
xtrain
,
ytrain
,
xtest
=
read_dataset
(
args
.
train_file
,
args
.
test_file
)
#
xtrainprocessed, ytrainprocessed = preprocess_dataset(xtrain, ytrain)
xtrainprocessed
,
ytrainprocessed
=
preprocess_dataset
(
xtrain
,
ytrain
)
#
xtestprocessed = preprocess_dataset(xtest)
xtestprocessed
=
preprocess_dataset
(
xtest
)
# model = LinearRegressor(FILL HERE
)
model
=
LinearRegressor
(
np
.
shape
(
xtrainprocessed
)[
1
]
)
# The loss function is provided by command line argument
# The loss function is provided by command line argument
loss_fn
,
loss_grad
=
dictionary_of_losses
[
args
.
loss
]
loss_fn
,
loss_grad
=
dictionary_of_losses
[
args
.
loss
]
# model.train(xtrainprocessed, ytrainprocessed, loss_fn, loss_grad, args.epoch, args.lr)
errlog
=
model
.
train
(
xtrainprocessed
,
ytrainprocessed
,
loss_fn
,
loss_grad
,
args
.
epoch
,
args
.
lr
)
ytest
=
model
.
predict
(
xtestprocessed
)
# ytest = model.predict(xtestprocessed)
ytest
=
ytest
.
astype
(
'int'
)
output
=
[(
i
,
np
.
absolute
(
ytest
[
i
]))
for
i
in
range
(
len
(
ytest
))]
np
.
savetxt
(
"output.csv"
,
output
,
delimiter
=
','
,
fmt
=
"
%
d"
,
header
=
"instance (id),count"
,
comments
=
''
)
np
.
savetxt
(
"error.log"
,
errlog
,
delimiter
=
'
\n
'
,
fmt
=
"
%
f"
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
Assignment1/output.csv
0 → 100644
View file @
bbf7342c
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment