Commit acf2bc51 authored by SHREYANSH JAIN's avatar SHREYANSH JAIN

commented test code

parent 1332f328
......@@ -283,15 +283,15 @@ def main():
output = [(i,np.absolute(ytest[i])) for i in range(len(ytest))]
np.savetxt("output.csv",output,delimiter=',',fmt="%d",header="instance (id),count",comments='')
np.savetxt("error.log",errlog,delimiter='\n',fmt="%f")
x,y,z = np.array([[ 1, 0, 2, -3], [ 1, -1, 0, -3], [-2, -5, 1, -3], [ 0, -5, 3, -3], [ 0, -4, 3, -2]]),np.array( [-2, 1, 1, 2, 0]),np.array( [ 1, 0, -2, -1])
print(mean_absolute_loss(x,y,z))
print(mean_absolute_gradient(x,y,z))
print(mean_squared_loss(x,y,z))
print(mean_squared_gradient(x,y,z))
print(root_mean_squared_loss(x,y,z))
print(root_mean_squared_gradient(x,y,z))
print(mean_log_cosh_loss(x,y,z))
print(mean_log_cosh_gradient(x,y,z))
# x,y,z = np.array([[ 1, 0, 2, -3], [ 1, -1, 0, -3], [-2, -5, 1, -3], [ 0, -5, 3, -3], [ 0, -4, 3, -2]]),np.array( [-2, 1, 1, 2, 0]),np.array( [ 1, 0, -2, -1])
# print(mean_absolute_loss(x,y,z))
# print(mean_absolute_gradient(x,y,z))
# print(mean_squared_loss(x,y,z))
# print(mean_squared_gradient(x,y,z))
# print(root_mean_squared_loss(x,y,z))
# print(root_mean_squared_gradient(x,y,z))
# print(mean_log_cosh_loss(x,y,z))
# print(mean_log_cosh_gradient(x,y,z))
if __name__ == '__main__':
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment