Commit 3f4ff138 authored by shreyansh's avatar shreyansh

added 56 models

parent b34a1e61
This diff is collapsed.
This diff is collapsed.
......@@ -34,22 +34,38 @@ sign = {
23:"y"
}
lastAns , consecutive = "",0
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
cv2.rectangle(frame,(100,100),(300,300),(0,255,0),0)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
roi = gray[100:300, 100:300]
resized = cv2.resize(roi, (28,28), interpolation = cv2.INTER_AREA)
resized = resized.reshape(-1,28,28,1).astype(float)
print(sign[np.argmax(model.predict(resized))])
# Our operations on the frame come here
# Display the resulting frame
cv2.imshow('frame',gray)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
frame = cv2.flip(frame,1)
if ret:
cv2.rectangle(frame,(100,100),(300,300),(0,255,0),0)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
roi = gray[100:300, 100:300]
resized = cv2.resize(roi, (28,28), interpolation = cv2.INTER_AREA)
image = resized.reshape(-1,28,28,1).astype(float)
a = cv2.waitKey(1) # waits to see if `esc` is pressed
softmax_output = model.predict(image)
if np.max(softmax_output) < 0.5:
continue
res = np.argmax(softmax_output)
lastAns = res
if res == lastAns:
consecutive+=1
else:
consecutive = 0
if consecutive == 10:
consecutive = 0
cv2.putText(frame, sign[res], (100,400), cv2.FONT_HERSHEY_SIMPLEX, 4, (255,255,255), 4)
cv2.imshow("new",roi)
cv2.imshow("frame", frame)
if a == 27: # when `esc` is pressed
break
# When everything done, release the capture
cap.release()
......
import pandas as pd
import numpy as np
import tensorflow as tf
from keras.models import Sequential,model_from_json,load_model
from keras.models import Sequential,load_model
from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D, Dropout
from sklearn.preprocessing import LabelBinarizer
trainData = pd.read_csv("/content/drive/My Drive/Colab Notebooks/data/sign-language-mnist/sign_mnist_train.csv").values
testData = pd.read_csv("/content/drive/My Drive/Colab Notebooks/data/sign-language-mnist/sign_mnist_test.csv").values
trainData = pd.read_csv("data/sign_mnist_train.csv").values
testData = pd.read_csv("data/sign_mnist_test.csv").values
trainX,trainY = trainData[:,1:],LabelBinarizer().fit_transform(trainData[:,0:1])
testX,testY = testData[:,1:],LabelBinarizer().fit_transform(testData[:,0:1])
......@@ -30,7 +30,7 @@ model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.35))
model.add(Dense(24, activation = 'softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.compile(loss='logcosh', optimizer='adamax', metrics=['accuracy'])
trainX = trainX.reshape(trainX.shape[0], 28, 28, 1)
testX = testX.reshape(testX.shape[0], 28, 28, 1)
......@@ -39,6 +39,6 @@ model.fit(trainX, trainY, validation_data=(testX, testY), epochs=40, batch_size=
scores = model.evaluate(testX, testY, verbose=0)
model.save("/content/drive/My Drive/Colab Notebooks/data/model.h5")
model.save("models/model.h5")
print("CNN Error: %.2f%%" % (100-scores[1]*100))
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment