Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
faec6370
Commit
faec6370
authored
Sep 21, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
readme for training atari models
parent
4587944d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
8 deletions
+13
-8
examples/Atari2600/common.py
examples/Atari2600/common.py
+7
-4
examples/OpenAIGym/README.md
examples/OpenAIGym/README.md
+6
-4
No files found.
examples/Atari2600/common.py
View file @
faec6370
...
...
@@ -57,7 +57,7 @@ def eval_with_funcs(predict_funcs, nr_eval):
return
self
.
queue_put_stoppable
(
self
.
q
,
score
)
q
=
queue
.
Queue
(
maxsize
=
2
)
q
=
queue
.
Queue
()
threads
=
[
Worker
(
f
,
q
)
for
f
in
predict_funcs
]
for
k
in
threads
:
...
...
@@ -68,12 +68,15 @@ def eval_with_funcs(predict_funcs, nr_eval):
for
_
in
tqdm
(
range
(
nr_eval
),
**
get_tqdm_kwargs
()):
r
=
q
.
get
()
stat
.
feed
(
r
)
except
:
logger
.
exception
(
"Eval"
)
finally
:
logger
.
info
(
"Waiting for all the workers to finish the last run..."
)
for
k
in
threads
:
k
.
stop
()
for
k
in
threads
:
k
.
join
()
while
q
.
qsize
():
r
=
q
.
get
()
stat
.
feed
(
r
)
except
:
logger
.
exception
(
"Eval"
)
finally
:
if
stat
.
count
>
0
:
return
(
stat
.
average
,
stat
.
max
)
return
(
0
,
0
)
...
...
examples/OpenAIGym/README.md
View file @
faec6370
# To train an Atari game in gym:
# To run a pretrained Batch-A3C atari model for 100 episodes:
`./train-atari.py --env Breakout-v0 --gpu 0`
1.
install
[
tensorpack
](
https://github.com/ppwwyyxx/tensorpack
)
2.
Download models from
[
model zoo
](
https://drive.google.com/open?id=0B9IPQTvr2BBkS0VhX0xmS1c5aFk
)
3.
`ENV=NAME_OF_ENV ./run-atari.py --load "$ENV".tfmodel --env "$ENV"`
# To run a pretrained Atari model for 100 episodes:
1.
Download models from
[
model zoo
](
https://drive.google.com/open?id=0B9IPQTvr2BBkS0VhX0xmS1c5aFk
)
2.
`ENV=NAME_OF_ENV ./run-atari.py --load "$ENV".tfmodel --env "$ENV"`
Models are available for the following gym atari environments (click links for videos):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment