Commit f9356946 authored by Yuxin Wu's avatar Yuxin Wu

command line tools to profile a graph

parent 54e391c0
......@@ -9,20 +9,26 @@ from tensorpack.tfutils.varmanip import dump_chkpt_vars
from tensorpack.utils import logger
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint')
parser.add_argument('--dump', help='dump to an npy file')
parser.add_argument('--shell', action='store_true', help='start a shell with the params')
args = parser.parse_args()
if args.checkpoint.endswith('.npy'):
params = np.load(args.checkpoint).item()
else:
params = dump_chkpt_vars(args.checkpoint)
logger.info("Variables in the checkpoint:")
logger.info(str(params.keys()))
if args.dump:
np.save(args.dump, params)
if args.shell:
import IPython as IP
IP.embed(config=IP.terminal.ipapp.load_default_config())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('model')
parser.add_argument('--dump', help='dump to an npy file')
parser.add_argument('--shell', action='store_true', help='start a shell with the params')
args = parser.parse_args()
if args.model.endswith('.npy'):
params = np.load(args.model).item()
else:
params = dump_chkpt_vars(args.model)
logger.info("Variables in the model:")
logger.info(str(params.keys()))
if args.dump:
assert args.dump.endswith('.npy'), args.dump
np.save(args.dump, params)
if args.shell:
# params is a dict. play with it
import IPython as IP
IP.embed(config=IP.terminal.ipapp.load_default_config())
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: checkpoint-prof.py
import tensorflow as tf
import numpy as np
from tensorpack import get_default_sess_config, get_op_tensor_name
from tensorpack.utils import logger
from tensorpack.tfutils.sessinit import get_model_loader
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='model file')
parser.add_argument('--meta', help='metagraph proto file. Will be used to load the graph', required=True)
parser.add_argument('-i', '--input', nargs='+', help='list of input tensors with their shapes.')
parser.add_argument('-o', '--output', nargs='+', help='list of output tensors')
parser.add_argument('--warmup', help='warmup iterations', type=int, default=5)
parser.add_argument('--print-flops', action='store_true')
parser.add_argument('--print-params', action='store_true')
parser.add_argument('--print-timing', action='store_true')
args = parser.parse_args()
tf.train.import_meta_graph(args.meta)
G = tf.get_default_graph()
with tf.Session(config=get_default_sess_config()) as sess:
init = get_model_loader(args.model)
init.init(sess)
feed = {}
for inp in args.input:
inp = inp.split('=')
name = get_op_tensor_name(inp[0].strip())[1]
shape = map(int, inp[1].strip().split(','))
tensor = G.get_tensor_by_name(name)
logger.info("Feeding shape ({}) to tensor {}".format(','.join(map(str, shape)), name))
feed[tensor] = np.random.rand(*shape)
fetches = []
for name in args.output:
name = get_op_tensor_name(name)[1]
fetches.append(G.get_tensor_by_name(name))
logger.info("Fetching tensors: {}".format(', '.join([k.name for k in fetches])))
for _ in range(args.warmup):
sess.run(fetches, feed_dict=feed)
opt = tf.RunOptions()
opt.trace_level = tf.RunOptions.FULL_TRACE
meta = tf.RunMetadata()
sess.run(fetches, feed_dict=feed, options=opt, run_metadata=meta)
if args.print_flops:
tf.contrib.tfprof.model_analyzer.print_model_analysis(
G, run_meta=meta,
tfprof_options=tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS)
if args.print_params:
tf.contrib.tfprof.model_analyzer.print_model_analysis(
G, run_meta=meta,
tfprof_options=tf.contrib.tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
if args.print_timing:
tf.contrib.tfprof.model_analyzer.print_model_analysis(
G, run_meta=meta,
tfprof_options=tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY)
......@@ -8,7 +8,7 @@ import argparse
import tensorflow as tf
import imp
from tensorpack import TowerContext, logger, ModelFromMetaGraph
from tensorpack import TowerContext, logger
from tensorpack.tfutils import sessinit, varmanip
parser = argparse.ArgumentParser()
......@@ -28,7 +28,7 @@ with tf.Graph().as_default() as G:
with TowerContext('', is_training=False):
M.build_graph(M.get_reused_placehdrs())
else:
M = ModelFromMetaGraph(args.meta)
tf.train.import_meta_graph(args.meta)
# loading...
if args.model.endswith('.npy'):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment