Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
f8b54d8e
Commit
f8b54d8e
authored
Mar 20, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add loadcaffe
parent
ef1b20f9
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
133 additions
and
60 deletions
+133
-60
tensorpack/models/regularize.py
tensorpack/models/regularize.py
+1
-1
tensorpack/utils/__init__.py
tensorpack/utils/__init__.py
+2
-48
tensorpack/utils/fs.py
tensorpack/utils/fs.py
+17
-0
tensorpack/utils/loadcaffe.py
tensorpack/utils/loadcaffe.py
+54
-0
tensorpack/utils/logger.py
tensorpack/utils/logger.py
+1
-1
tensorpack/utils/utils.py
tensorpack/utils/utils.py
+58
-10
No files found.
tensorpack/models/regularize.py
View file @
f8b54d8e
...
@@ -6,7 +6,7 @@ import tensorflow as tf
...
@@ -6,7 +6,7 @@ import tensorflow as tf
import
re
import
re
from
..utils
import
logger
from
..utils
import
logger
from
..utils
import
*
from
..utils
.utils
import
*
__all__
=
[
'regularize_cost'
,
'l2_regularizer'
,
'l1_regularizer'
]
__all__
=
[
'regularize_cost'
,
'l2_regularizer'
,
'l1_regularizer'
]
...
...
tensorpack/utils/__init__.py
View file @
f8b54d8e
...
@@ -4,14 +4,8 @@
...
@@ -4,14 +4,8 @@
from
pkgutil
import
walk_packages
from
pkgutil
import
walk_packages
import
os
import
os
import
time
import
sys
from
contextlib
import
contextmanager
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
import
collections
from
.
import
logger
def
global_import
(
name
):
def
global_import
(
name
):
p
=
__import__
(
name
,
globals
(),
None
,
level
=
1
)
p
=
__import__
(
name
,
globals
(),
None
,
level
=
1
)
...
@@ -20,16 +14,9 @@ def global_import(name):
...
@@ -20,16 +14,9 @@ def global_import(name):
globals
()[
k
]
=
p
.
__dict__
[
k
]
globals
()[
k
]
=
p
.
__dict__
[
k
]
global_import
(
'naming'
)
global_import
(
'naming'
)
global_import
(
'sessinit'
)
global_import
(
'sessinit'
)
global_import
(
'utils'
)
@
contextmanager
# TODO move this utils to another file
def
timed_operation
(
msg
,
log_start
=
False
):
if
log_start
:
logger
.
info
(
'start {} ...'
.
format
(
msg
))
start
=
time
.
time
()
yield
logger
.
info
(
'{} finished, time={:.2f}sec.'
.
format
(
msg
,
time
.
time
()
-
start
))
def
get_default_sess_config
(
mem_fraction
=
0.5
):
def
get_default_sess_config
(
mem_fraction
=
0.5
):
"""
"""
Return a better config to use as default.
Return a better config to use as default.
...
@@ -41,35 +28,6 @@ def get_default_sess_config(mem_fraction=0.5):
...
@@ -41,35 +28,6 @@ def get_default_sess_config(mem_fraction=0.5):
conf
.
allow_soft_placement
=
True
conf
.
allow_soft_placement
=
True
return
conf
return
conf
class
memoized
(
object
):
'''Decorator. Caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned
(not reevaluated).
'''
def
__init__
(
self
,
func
):
self
.
func
=
func
self
.
cache
=
{}
def
__call__
(
self
,
*
args
):
if
not
isinstance
(
args
,
collections
.
Hashable
):
# uncacheable. a list, for instance.
# better to not cache than blow up.
return
self
.
func
(
*
args
)
if
args
in
self
.
cache
:
return
self
.
cache
[
args
]
else
:
value
=
self
.
func
(
*
args
)
self
.
cache
[
args
]
=
value
return
value
def
__repr__
(
self
):
'''Return the function's docstring.'''
return
self
.
func
.
__doc__
def
__get__
(
self
,
obj
,
objtype
):
'''Support instance methods.'''
return
functools
.
partial
(
self
.
__call__
,
obj
)
def
get_global_step_var
():
def
get_global_step_var
():
""" get global_step variable in the current graph"""
""" get global_step variable in the current graph"""
try
:
try
:
...
@@ -84,7 +42,3 @@ def get_global_step():
...
@@ -84,7 +42,3 @@ def get_global_step():
return
tf
.
train
.
global_step
(
return
tf
.
train
.
global_step
(
tf
.
get_default_session
(),
tf
.
get_default_session
(),
get_global_step_var
())
get_global_step_var
())
def
get_rng
(
self
):
seed
=
(
id
(
self
)
+
os
.
getpid
())
%
4294967295
return
np
.
random
.
RandomState
(
seed
)
tensorpack/utils/fs.py
0 → 100644
View file @
f8b54d8e
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: fs.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
os
def
mkdir_p
(
dirname
):
assert
dirname
is
not
None
if
dirname
==
''
:
return
try
:
os
.
makedirs
(
dirname
)
except
OSError
as
e
:
if
e
.
errno
!=
17
:
raise
e
tensorpack/utils/loadcaffe.py
0 → 100644
View file @
f8b54d8e
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: loadcaffe.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
from
collections
import
namedtuple
,
defaultdict
from
abc
import
abstractmethod
import
os
from
six.moves
import
zip
from
.utils
import
change_env
from
.
import
logger
def
get_processor
():
ret
=
{}
def
process_conv
(
layer_name
,
param
):
assert
len
(
param
)
==
2
# caffe: ch_out, ch_in, h, w
return
{
layer_name
+
'/W'
:
param
[
0
]
.
data
.
transpose
(
2
,
3
,
1
,
0
),
layer_name
+
'/b'
:
param
[
1
]
.
data
}
ret
[
'Convolution'
]
=
process_conv
# XXX caffe has an 'transpose' option for fc/W
def
process_fc
(
layer_name
,
param
):
assert
len
(
param
)
==
2
return
{
layer_name
+
'/W'
:
param
[
0
]
.
data
.
transpose
(),
layer_name
+
'/b'
:
param
[
1
]
.
data
}
ret
[
'InnerProduct'
]
=
process_fc
return
ret
def
load_caffe
(
model_desc
,
model_file
):
"""
return a dict of params
"""
param_dict
=
{}
param_processors
=
get_processor
()
with
change_env
(
'GLOG_minloglevel'
,
'2'
):
import
caffe
net
=
caffe
.
Net
(
model_desc
,
model_file
,
caffe
.
TEST
)
layer_names
=
net
.
_layer_names
for
layername
,
layer
in
zip
(
layer_names
,
net
.
layers
):
if
layer
.
type
in
param_processors
:
param_dict
.
update
(
param_processors
[
layer
.
type
](
layername
,
layer
.
blobs
))
else
:
assert
len
(
layer
.
blobs
)
==
0
,
len
(
layer
.
blobs
)
logger
.
info
(
"Model loaded from caffe. Params: "
+
\
" "
.
join
(
sorted
(
param_dict
.
keys
())))
return
param_dict
if
__name__
==
'__main__'
:
ret
=
load_caffe
(
'/home/wyx/Work/DL/caffe/models/VGG/VGG_ILSVRC_16_layers_deploy.prototxt'
,
'/home/wyx/Work/DL/caffe/models/VGG/VGG_ILSVRC_16_layers.caffemodel'
)
tensorpack/utils/logger.py
View file @
f8b54d8e
...
@@ -10,7 +10,7 @@ from datetime import datetime
...
@@ -10,7 +10,7 @@ from datetime import datetime
from
six.moves
import
input
from
six.moves
import
input
import
sys
import
sys
from
.
util
s
import
mkdir_p
from
.
f
s
import
mkdir_p
__all__
=
[]
__all__
=
[]
...
...
tensorpack/utils/utils.py
View file @
f8b54d8e
# -*- coding: UTF-8 -*-
# -*- coding: UTF-8 -*-
# File: utils.py
# File: utils.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import
os
import
os
,
sys
from
contextlib
import
contextmanager
import
time
import
collections
from
.
import
logger
__all__
=
[
'timed_operation'
,
'change_env'
,
'get_rng'
,
'memoized'
]
#def expand_dim_if_necessary(var, dp):
#def expand_dim_if_necessary(var, dp):
# """
# """
# Args:
# Args:
...
@@ -17,13 +24,54 @@ import os
...
@@ -17,13 +24,54 @@ import os
# dp = dp.reshape(new_shape)
# dp = dp.reshape(new_shape)
# return dp
# return dp
@
contextmanager
def
timed_operation
(
msg
,
log_start
=
False
):
if
log_start
:
logger
.
info
(
'start {} ...'
.
format
(
msg
))
start
=
time
.
time
()
yield
logger
.
info
(
'{} finished, time={:.2f}sec.'
.
format
(
msg
,
time
.
time
()
-
start
))
@
contextmanager
def
change_env
(
name
,
val
):
oldval
=
os
.
environ
.
get
(
name
,
None
)
os
.
environ
[
name
]
=
val
yield
if
oldval
is
None
:
del
os
.
environ
[
name
]
else
:
os
.
environ
[
name
]
=
oldval
class
memoized
(
object
):
'''Decorator. Caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned
(not reevaluated).
'''
def
__init__
(
self
,
func
):
self
.
func
=
func
self
.
cache
=
{}
def
__call__
(
self
,
*
args
):
if
not
isinstance
(
args
,
collections
.
Hashable
):
# uncacheable. a list, for instance.
# better to not cache than blow up.
return
self
.
func
(
*
args
)
if
args
in
self
.
cache
:
return
self
.
cache
[
args
]
else
:
value
=
self
.
func
(
*
args
)
self
.
cache
[
args
]
=
value
return
value
def
__repr__
(
self
):
'''Return the function's docstring.'''
return
self
.
func
.
__doc__
def
__get__
(
self
,
obj
,
objtype
):
'''Support instance methods.'''
return
functools
.
partial
(
self
.
__call__
,
obj
)
def
mkdir_p
(
dirname
):
def
get_rng
(
self
):
assert
dirname
is
not
None
seed
=
(
id
(
self
)
+
os
.
getpid
())
%
4294967295
if
dirname
==
''
:
return
np
.
random
.
RandomState
(
seed
)
return
try
:
os
.
makedirs
(
dirname
)
except
OSError
as
e
:
if
e
.
errno
!=
17
:
raise
e
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment