Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
f1b1ff92
Commit
f1b1ff92
authored
Jul 14, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug fix & update speed numbers
parent
9e436219
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
9 additions
and
7 deletions
+9
-7
examples/Atari2600/DQN.py
examples/Atari2600/DQN.py
+1
-1
examples/Atari2600/README.md
examples/Atari2600/README.md
+1
-1
examples/cifar-convnet.py
examples/cifar-convnet.py
+1
-1
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+3
-1
tensorpack/RL/expreplay.py
tensorpack/RL/expreplay.py
+1
-1
tensorpack/train/trainer.py
tensorpack/train/trainer.py
+1
-1
tensorpack/utils/gpu.py
tensorpack/utils/gpu.py
+1
-1
No files found.
examples/Atari2600/DQN.py
View file @
f1b1ff92
...
...
@@ -38,7 +38,7 @@ EXPLORATION_EPOCH_ANNEAL = 0.01
END_EXPLORATION
=
0.1
MEMORY_SIZE
=
1e6
INIT_MEMORY_SIZE
=
5
0000
INIT_MEMORY_SIZE
=
5
e4
STEP_PER_EPOCH
=
10000
EVAL_EPISODE
=
50
...
...
examples/Atari2600/README.md
View file @
f1b1ff92
...
...
@@ -17,7 +17,7 @@ DQN was trained on 1 GPU and it typically took 2~3 days of training to reach a s
My Batch-A3C implementation only took <2 hours with 2 GPUs (one for training and one for simulation).
This is probably the fastest RL trainer you'd find.
The x-axis is the number of iterations not wall time
. The iteration speed is 6.7it/s for B-A3C and 7.3it/s for D-DQN
.
The x-axis is the number of iterations not wall time
, but iteration speed is about 7.8it/s for both models
.
A demo trained with Double-DQN on breakout is available at
[
youtube
](
https://youtu.be/o21mddZtE5Y
)
.
...
...
examples/cifar-convnet.py
View file @
f1b1ff92
...
...
@@ -18,7 +18,7 @@ A small convnet model for Cifar10 or Cifar100 dataset.
Cifar10:
90
%
validation accuracy after 40k step.
91
%
accuracy after 80k step.
1
8.8 step/s on TitanX
1
9.3 step/s on Tesla M40
Not a good for Cifar100, just for demonstration.
"""
...
...
examples/svhn-digit-convnet.py
View file @
f1b1ff92
...
...
@@ -14,7 +14,9 @@ from tensorpack.tfutils.summary import *
"""
SVHN convnet.
About 3.0
%
validation error after 70 epoch. 2.5
%
after 130 epoch.
About 3.0
%
validation error after 70 epoch. 2.5
%
after 130 epoch.
Each epoch is set to 4721 iterations. The speed is about 44 it/s on a Tesla M30
"""
class
Model
(
ModelDesc
):
...
...
tensorpack/RL/expreplay.py
View file @
f1b1ff92
...
...
@@ -77,7 +77,7 @@ class ExpReplay(DataFlow, Callback):
with
tqdm
(
total
=
self
.
init_memory_size
)
as
pbar
:
while
len
(
self
.
mem
)
<
self
.
init_memory_size
:
#from copy import deepcopy # for debug
#from copy import deepcopy #
quickly fill the memory
for debug
#self.mem.append(deepcopy(self.mem[0]))
self
.
_populate_exp
()
pbar
.
update
()
...
...
tensorpack/train/trainer.py
View file @
f1b1ff92
...
...
@@ -182,7 +182,7 @@ class QueueInputTrainer(Trainer):
self
.
train_op
=
tf
.
group
(
self
.
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
summary_moving_average
(),
'train_op'
)
summary_moving_average
(),
name
=
'train_op'
)
self
.
main_loop
()
...
...
tensorpack/utils/gpu.py
View file @
f1b1ff92
...
...
@@ -3,7 +3,7 @@
# File: gpu.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
os
from
.utils
import
change_env
__all__
=
[
'change_gpu'
,
'get_nr_gpu'
,
'get_gpus'
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment