Commit ef8aa2a9 authored by Yuxin Wu's avatar Yuxin Wu

update readme

parent 09d1e881
# tensorpack
Neural Network Toolbox based on TensorFlow
In development. No document.
## Features:
+ Scoped abstraction of common models.
......
......@@ -39,14 +39,6 @@ def get_model(inputs, is_training):
image, label = inputs
image = tf.expand_dims(image, 3) # add a single channel
#if is_training:
## augmentations
#image, label = tf.train.slice_input_producer(
#[image, label], shuffle=False, name='slice_queue')
#image, label = tf.train.batch(
#[image, label], BATCH_SIZE, capacity=CAPACITY,
#num_threads=2, enqueue_many=False)
l = Conv2D('conv0', image, out_channel=32, kernel_shape=5)
l = MaxPooling('pool0', l, 2)
l = Conv2D('conv1', l, out_channel=40, kernel_shape=3)
......@@ -93,7 +85,6 @@ def get_config():
dataset_train = BatchData(dataset.Mnist('train'), 128)
dataset_test = BatchData(dataset.Mnist('test'), 256, remainder=True)
step_per_epoch = dataset_train.size()
step_per_epoch = 30
#dataset_test = FixedSizeData(dataset_test, 20)
sess_config = get_default_sess_config()
......@@ -106,10 +97,8 @@ def get_config():
tf.placeholder(
tf.int32, shape=(None,), name='label')
]
input_queue = tf.RandomShuffleQueue(
100, 50, [x.dtype for x in input_vars], name='queue')
#input_queue = tf.FIFOQueue(
#100, [x.dtype for x in input_vars], name='queue')
input_queue = tf.FIFOQueue(
100, [x.dtype for x in input_vars], name='queue')
lr = tf.train.exponential_decay(
learning_rate=1e-4,
......@@ -124,7 +113,6 @@ def get_config():
callbacks=Callbacks([
SummaryWriter(print_tag=['train_cost', 'train_error']),
PeriodicSaver(),
#ValidationCallback(dataset_test, 'test')
ValidationError(dataset_test, prefix='test'),
]),
session_config=sess_config,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment