Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
ed444aab
Commit
ed444aab
authored
Jul 29, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update ShuffleNet with different configs
parent
7cb2606c
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
72 additions
and
56 deletions
+72
-56
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+10
-9
examples/ImageNetModels/README.md
examples/ImageNetModels/README.md
+3
-4
examples/ImageNetModels/shufflenet.py
examples/ImageNetModels/shufflenet.py
+57
-41
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+1
-1
tensorpack/tfutils/gradproc.py
tensorpack/tfutils/gradproc.py
+1
-1
No files found.
examples/DoReFa-Net/README.md
View file @
ed444aab
...
@@ -14,13 +14,14 @@ This is a good set of baselines for research in model quantization.
...
@@ -14,13 +14,14 @@ This is a good set of baselines for research in model quantization.
These quantization techniques, when applied on AlexNet, achieves the following ImageNet performance in this implementation:
These quantization techniques, when applied on AlexNet, achieves the following ImageNet performance in this implementation:
| Model | Bit Width
<br/>
(weights, activations, gradients) | Top 1 Validation Error
<sup>
[
1
](
#ft1
)
</sup>
|
| Model | Bit Width
<br/>
(weights, activations, gradients) | Top 1 Validation Error
<sup>
[
1
](
#ft1
)
</sup>
|
|:----------------------------------:|:-------------------------------------------------:|:-----------------------------------------------------------------------------:|
|:----------------------------------:|:-------------------------------------------------:|:-----------------------------------------------------------------------------
--
:|
| Full Precision
<sup>
[
2
](
#ft2
)
</sup>
| 32,32,32 | 40.3% |
| Full Precision
<sup>
[
2
](
#ft2
)
</sup>
| 32,32,32 | 40.3% |
| TTQ | t,32,32 | 42.0% |
| TTQ | t,32,32 | 42.0% |
| BWN | 1,32,32 | 44.6% |
| BWN | 1,32,32 | 44.6% |
| BNN | 1,1,32 | 51.9% |
| BNN | 1,1,32 | 51.9% |
| DoReFa | 8,8,8 | 42.0%
[
:arrow_down:
](
http://models.tensorpack.com/DoReFa-Net/AlexNet-8,8,8.npz
)
|
| DoReFa | 1,2,32 | 46.6% |
| DoReFa | 1,2,32 | 46.6% |
| DoReFa | 1,2,6 | 46.8%
[
:arrow_down:
](
http://models.tensorpack.com/DoReFa-Net/
alexnet-12
6.npz
)
|
| DoReFa | 1,2,6 | 46.8%
[
:arrow_down:
](
http://models.tensorpack.com/DoReFa-Net/
AlexNet-1,2,
6.npz
)
|
| DoReFa | 1,2,4 | 54.0% |
| DoReFa | 1,2,4 | 54.0% |
<a
id=
"ft1"
>
1
</a>
: These numbers were obtained by training on 8 GPUs with a total batch size of 256.
<a
id=
"ft1"
>
1
</a>
: These numbers were obtained by training on 8 GPUs with a total batch size of 256.
...
...
examples/ImageNetModels/README.md
View file @
ed444aab
...
@@ -10,8 +10,7 @@ Pretrained models can be downloaded at [tensorpack model zoo](http://models.tens
...
@@ -10,8 +10,7 @@ Pretrained models can be downloaded at [tensorpack model zoo](http://models.tens
Reproduce
[
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
](
https://arxiv.org/abs/1707.01083
)
Reproduce
[
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
](
https://arxiv.org/abs/1707.01083
)
on ImageNet.
on ImageNet.
This is a 38Mflops ShuffleNet, corresponding to
`ShuffleNet 0.5x g=3`
in __the
This is a 38Mflops ShuffleNet, corresponding to
`ShuffleNet 0.5x g=3`
in the paper.
2nd arxiv version__ of the paper.
After 240 epochs (36 hours on 8 P100s) it reaches top-1 error of 42.32%,
After 240 epochs (36 hours on 8 P100s) it reaches top-1 error of 42.32%,
matching the paper's number.
matching the paper's number.
...
...
examples/ImageNetModels/shufflenet.py
View file @
ed444aab
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
import
argparse
import
argparse
import
numpy
as
np
import
numpy
as
np
import
math
import
os
import
os
import
cv2
import
cv2
...
@@ -15,6 +16,7 @@ from tensorpack.dataflow import imgaug
...
@@ -15,6 +16,7 @@ from tensorpack.dataflow import imgaug
from
tensorpack.tfutils
import
argscope
,
get_model_loader
,
model_utils
from
tensorpack.tfutils
import
argscope
,
get_model_loader
,
model_utils
from
tensorpack.tfutils.scope_utils
import
under_name_scope
from
tensorpack.tfutils.scope_utils
import
under_name_scope
from
tensorpack.utils.gpu
import
get_num_gpu
from
tensorpack.utils.gpu
import
get_num_gpu
from
tensorpack.utils
import
logger
from
imagenet_utils
import
(
from
imagenet_utils
import
(
get_imagenet_dataflow
,
get_imagenet_dataflow
,
...
@@ -52,29 +54,24 @@ def channel_shuffle(l, group):
...
@@ -52,29 +54,24 @@ def channel_shuffle(l, group):
return
l
return
l
def
BN
(
x
,
name
=
None
):
@
layer_register
()
return
BatchNorm
(
'bn'
,
x
)
def
shufflenet_unit
(
l
,
out_channel
,
group
,
stride
):
class
Model
(
ImageNetModel
):
weight_decay
=
4e-5
def
get_logits
(
self
,
image
):
def
shufflenet_unit
(
l
,
out_channel
,
group
,
stride
):
in_shape
=
l
.
get_shape
()
.
as_list
()
in_shape
=
l
.
get_shape
()
.
as_list
()
in_channel
=
in_shape
[
1
]
in_channel
=
in_shape
[
1
]
shortcut
=
l
shortcut
=
l
#
We do not apply group convolution on the first pointwise layer
# "
We do not apply group convolution on the first pointwise layer
# because the number of input channels is relatively small.
# because the number of input channels is relatively small."
first_split
=
group
if
in_channel
!=
12
else
1
first_split
=
group
if
in_channel
>
24
else
1
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
//
4
,
1
,
split
=
first_split
,
activation
=
BNReLU
)
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
//
4
,
1
,
split
=
first_split
,
activation
=
BNReLU
)
l
=
channel_shuffle
(
l
,
group
)
l
=
channel_shuffle
(
l
,
group
)
l
=
DepthConv
(
'dconv'
,
l
,
out_channel
//
4
,
3
,
activation
=
BN
,
stride
=
stride
)
l
=
DepthConv
(
'dconv'
,
l
,
out_channel
//
4
,
3
,
stride
=
stride
)
l
=
BatchNorm
(
'dconv_bn'
,
l
)
l
=
Conv2D
(
'conv2'
,
l
,
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
if
stride
==
1
else
out_channel
-
in_channel
,
out_channel
if
stride
==
1
else
out_channel
-
in_channel
,
1
,
split
=
group
,
activation
=
BN
)
1
,
split
=
group
)
l
=
BatchNorm
(
'conv2_bn'
,
l
)
if
stride
==
1
:
# unit (b)
if
stride
==
1
:
# unit (b)
output
=
tf
.
nn
.
relu
(
shortcut
+
l
)
output
=
tf
.
nn
.
relu
(
shortcut
+
l
)
else
:
# unit (c)
else
:
# unit (c)
...
@@ -82,28 +79,44 @@ class Model(ImageNetModel):
...
@@ -82,28 +79,44 @@ class Model(ImageNetModel):
output
=
tf
.
concat
([
shortcut
,
tf
.
nn
.
relu
(
l
)],
axis
=
1
)
output
=
tf
.
concat
([
shortcut
,
tf
.
nn
.
relu
(
l
)],
axis
=
1
)
return
output
return
output
@
layer_register
(
log_shape
=
True
)
def
shufflenet_stage
(
input
,
channel
,
num_blocks
,
group
):
l
=
input
for
i
in
range
(
num_blocks
):
name
=
'block{}'
.
format
(
i
)
l
=
shufflenet_unit
(
name
,
l
,
channel
,
group
,
2
if
i
==
0
else
1
)
return
l
class
Model
(
ImageNetModel
):
weight_decay
=
4e-5
def
get_logits
(
self
,
image
):
with
argscope
([
Conv2D
,
MaxPooling
,
AvgPooling
,
GlobalAvgPooling
,
BatchNorm
],
data_format
=
self
.
data_format
),
\
with
argscope
([
Conv2D
,
MaxPooling
,
AvgPooling
,
GlobalAvgPooling
,
BatchNorm
],
data_format
=
self
.
data_format
),
\
argscope
(
Conv2D
,
use_bias
=
False
):
argscope
(
Conv2D
,
use_bias
=
False
):
group
=
3
# See Table 1 & 2 in https://arxiv.org/abs/1707.01083
channels
=
[
120
,
240
,
480
]
group
=
args
.
group
channels
=
{
l
=
Conv2D
(
'conv1'
,
image
,
12
,
3
,
strides
=
2
,
activation
=
BNReLU
)
3
:
[
240
,
480
,
960
],
4
:
[
272
,
544
,
1088
],
8
:
[
384
,
768
,
1536
]
}
mul
=
group
*
4
# #chan has to be a multiple of this number
channels
=
[
int
(
math
.
ceil
(
x
*
args
.
ratio
/
mul
)
*
mul
)
for
x
in
channels
[
group
]]
# The first channel must be a multiple of group
first_chan
=
int
(
math
.
ceil
(
24
*
args
.
ratio
/
group
)
*
group
)
logger
.
info
(
"#Channels: "
+
str
([
first_chan
]
+
channels
))
l
=
Conv2D
(
'conv1'
,
image
,
first_chan
,
3
,
strides
=
2
,
activation
=
BNReLU
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
2
,
padding
=
'SAME'
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
2
,
padding
=
'SAME'
)
with
tf
.
variable_scope
(
'group1'
):
l
=
shufflenet_stage
(
'group1'
,
l
,
channels
[
0
],
4
,
group
)
for
i
in
range
(
4
):
l
=
shufflenet_stage
(
'group2'
,
l
,
channels
[
1
],
8
,
group
)
with
tf
.
variable_scope
(
'block{}'
.
format
(
i
)):
l
=
shufflenet_stage
(
'group3'
,
l
,
channels
[
2
],
4
,
group
)
l
=
shufflenet_unit
(
l
,
channels
[
0
],
group
,
2
if
i
==
0
else
1
)
with
tf
.
variable_scope
(
'group2'
):
for
i
in
range
(
8
):
with
tf
.
variable_scope
(
'block{}'
.
format
(
i
)):
l
=
shufflenet_unit
(
l
,
channels
[
1
],
group
,
2
if
i
==
0
else
1
)
with
tf
.
variable_scope
(
'group3'
):
for
i
in
range
(
4
):
with
tf
.
variable_scope
(
'block{}'
.
format
(
i
)):
l
=
shufflenet_unit
(
l
,
channels
[
2
],
group
,
2
if
i
==
0
else
1
)
l
=
GlobalAvgPooling
(
'gap'
,
l
)
l
=
GlobalAvgPooling
(
'gap'
,
l
)
logits
=
FullyConnected
(
'linear'
,
l
,
1000
)
logits
=
FullyConnected
(
'linear'
,
l
,
1000
)
return
logits
return
logits
...
@@ -179,6 +192,8 @@ if __name__ == '__main__':
...
@@ -179,6 +192,8 @@ if __name__ == '__main__':
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--data'
,
help
=
'ILSVRC dataset dir'
)
parser
.
add_argument
(
'--data'
,
help
=
'ILSVRC dataset dir'
)
parser
.
add_argument
(
'--ratio'
,
type
=
float
,
default
=
0.5
,
choices
=
[
1.
,
0.5
,
0.25
])
parser
.
add_argument
(
'--group'
,
type
=
int
,
default
=
3
,
choices
=
[
3
,
4
,
8
])
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
parser
.
add_argument
(
'--eval'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--eval'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--flops'
,
action
=
'store_true'
,
help
=
'print flops and exit'
)
parser
.
add_argument
(
'--flops'
,
action
=
'store_true'
,
help
=
'print flops and exit'
)
...
@@ -210,7 +225,8 @@ if __name__ == '__main__':
...
@@ -210,7 +225,8 @@ if __name__ == '__main__':
cmd
=
'op'
,
cmd
=
'op'
,
options
=
tf
.
profiler
.
ProfileOptionBuilder
.
float_operation
())
options
=
tf
.
profiler
.
ProfileOptionBuilder
.
float_operation
())
else
:
else
:
logger
.
set_logger_dir
(
os
.
path
.
join
(
'train_log'
,
'shufflenet'
))
logger
.
set_logger_dir
(
os
.
path
.
join
(
'train_log'
,
'shufflenet-{}x-g={}'
.
format
(
args
.
ratio
,
args
.
group
)))
nr_tower
=
max
(
get_num_gpu
(),
1
)
nr_tower
=
max
(
get_num_gpu
(),
1
)
config
=
get_config
(
model
,
nr_tower
)
config
=
get_config
(
model
,
nr_tower
)
...
...
tensorpack/models/batch_norm.py
View file @
ed444aab
...
@@ -92,7 +92,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -92,7 +92,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
They are very similar in speed, but `internal_update=True` can be used
They are very similar in speed, but `internal_update=True` can be used
when you have conditionals in your model, or when you have multiple networks to train.
when you have conditionals in your model, or when you have multiple networks to train.
Corresponding TF issue: https://github.com/tensorflow/tensorflow/issues/14699
Corresponding TF issue: https://github.com/tensorflow/tensorflow/issues/14699
sync_statistics (str or None): one of None "nccl", or "horovod".
sync_statistics (str or None): one of None
,
"nccl", or "horovod".
By default (None), it uses statistics of the input tensor to normalize.
By default (None), it uses statistics of the input tensor to normalize.
This is the standard way BatchNorm was done in most frameworks.
This is the standard way BatchNorm was done in most frameworks.
...
...
tensorpack/tfutils/gradproc.py
View file @
ed444aab
...
@@ -251,7 +251,7 @@ class ScaleGradient(MapGradient):
...
@@ -251,7 +251,7 @@ class ScaleGradient(MapGradient):
if
re
.
match
(
regex
,
varname
):
if
re
.
match
(
regex
,
varname
):
if
self
.
_verbose
:
if
self
.
_verbose
:
logger
.
info
(
"
Apply lr multiplier {} for {}"
.
format
(
val
,
varname
))
logger
.
info
(
"
Gradient of '{}' is multipled by {}"
.
format
(
varname
,
val
))
if
val
!=
0
:
# skip zero to speed up
if
val
!=
0
:
# skip zero to speed up
return
grad
*
val
return
grad
*
val
else
:
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment