Commit ed444aab authored by Yuxin Wu's avatar Yuxin Wu

Update ShuffleNet with different configs

parent 7cb2606c
......@@ -13,15 +13,16 @@ Alternative link to this page: [http://dorefa.net](http://dorefa.net)
This is a good set of baselines for research in model quantization.
These quantization techniques, when applied on AlexNet, achieves the following ImageNet performance in this implementation:
| Model | Bit Width <br/> (weights, activations, gradients) | Top 1 Validation Error <sup>[1](#ft1)</sup> |
|:----------------------------------:|:-------------------------------------------------:|:-----------------------------------------------------------------------------:|
| Full Precision<sup>[2](#ft2)</sup> | 32,32,32 | 40.3% |
| TTQ | t,32,32 | 42.0% |
| BWN | 1,32,32 | 44.6% |
| BNN | 1,1,32 | 51.9% |
| DoReFa | 1,2,32 | 46.6% |
| DoReFa | 1,2,6 | 46.8% [:arrow_down:](http://models.tensorpack.com/DoReFa-Net/alexnet-126.npz) |
| DoReFa | 1,2,4 | 54.0% |
| Model | Bit Width <br/> (weights, activations, gradients) | Top 1 Validation Error <sup>[1](#ft1)</sup> |
|:----------------------------------:|:-------------------------------------------------:|:-------------------------------------------------------------------------------:|
| Full Precision<sup>[2](#ft2)</sup> | 32,32,32 | 40.3% |
| TTQ | t,32,32 | 42.0% |
| BWN | 1,32,32 | 44.6% |
| BNN | 1,1,32 | 51.9% |
| DoReFa | 8,8,8 | 42.0% [:arrow_down:](http://models.tensorpack.com/DoReFa-Net/AlexNet-8,8,8.npz) |
| DoReFa | 1,2,32 | 46.6% |
| DoReFa | 1,2,6 | 46.8% [:arrow_down:](http://models.tensorpack.com/DoReFa-Net/AlexNet-1,2,6.npz) |
| DoReFa | 1,2,4 | 54.0% |
<a id="ft1">1</a>: These numbers were obtained by training on 8 GPUs with a total batch size of 256.
The DoReFa-Net models reach slightly better performance than our paper, due to
......
......@@ -10,8 +10,7 @@ Pretrained models can be downloaded at [tensorpack model zoo](http://models.tens
Reproduce [ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices](https://arxiv.org/abs/1707.01083)
on ImageNet.
This is a 38Mflops ShuffleNet, corresponding to `ShuffleNet 0.5x g=3` in __the
2nd arxiv version__ of the paper.
This is a 38Mflops ShuffleNet, corresponding to `ShuffleNet 0.5x g=3` in the paper.
After 240 epochs (36 hours on 8 P100s) it reaches top-1 error of 42.32%,
matching the paper's number.
......@@ -50,7 +49,7 @@ See `./vgg16.py --help` for usage.
| No Normalization | Batch Normalization | Group Normalization |
|:------------------------------------------|---------------------|--------------------:|
| 29~30% (large variation with random seed) | 28% | 27.6% |
Note that the purpose of this experiment in the paper is not to claim GroupNorm is better
than BatchNorm, therefore the training settings and hyperpameters have not been individually tuned for best accuracy.
......@@ -62,5 +61,5 @@ ResNet, squeeze-and-excitation networks.
### DoReFa-Net
See [DoReFa-Net examples](../DoReFa-Net).
It includes other quantization methods such as Binary Weight Network, Trained Ternary Quantization.
It includes other quantization methods such as Binary Weight Network, Trained Ternary Quantization.
......@@ -4,6 +4,7 @@
import argparse
import numpy as np
import math
import os
import cv2
......@@ -15,6 +16,7 @@ from tensorpack.dataflow import imgaug
from tensorpack.tfutils import argscope, get_model_loader, model_utils
from tensorpack.tfutils.scope_utils import under_name_scope
from tensorpack.utils.gpu import get_num_gpu
from tensorpack.utils import logger
from imagenet_utils import (
get_imagenet_dataflow,
......@@ -52,58 +54,69 @@ def channel_shuffle(l, group):
return l
def BN(x, name=None):
return BatchNorm('bn', x)
@layer_register()
def shufflenet_unit(l, out_channel, group, stride):
in_shape = l.get_shape().as_list()
in_channel = in_shape[1]
shortcut = l
# "We do not apply group convolution on the first pointwise layer
# because the number of input channels is relatively small."
first_split = group if in_channel > 24 else 1
l = Conv2D('conv1', l, out_channel // 4, 1, split=first_split, activation=BNReLU)
l = channel_shuffle(l, group)
l = DepthConv('dconv', l, out_channel // 4, 3, stride=stride)
l = BatchNorm('dconv_bn', l)
l = Conv2D('conv2', l,
out_channel if stride == 1 else out_channel - in_channel,
1, split=group)
l = BatchNorm('conv2_bn', l)
if stride == 1: # unit (b)
output = tf.nn.relu(shortcut + l)
else: # unit (c)
shortcut = AvgPooling('avgpool', shortcut, 3, 2, padding='SAME')
output = tf.concat([shortcut, tf.nn.relu(l)], axis=1)
return output
@layer_register(log_shape=True)
def shufflenet_stage(input, channel, num_blocks, group):
l = input
for i in range(num_blocks):
name = 'block{}'.format(i)
l = shufflenet_unit(name, l, channel, group, 2 if i == 0 else 1)
return l
class Model(ImageNetModel):
weight_decay = 4e-5
def get_logits(self, image):
def shufflenet_unit(l, out_channel, group, stride):
in_shape = l.get_shape().as_list()
in_channel = in_shape[1]
shortcut = l
# We do not apply group convolution on the first pointwise layer
# because the number of input channels is relatively small.
first_split = group if in_channel != 12 else 1
l = Conv2D('conv1', l, out_channel // 4, 1, split=first_split, activation=BNReLU)
l = channel_shuffle(l, group)
l = DepthConv('dconv', l, out_channel // 4, 3, activation=BN, stride=stride)
l = Conv2D('conv2', l,
out_channel if stride == 1 else out_channel - in_channel,
1, split=group, activation=BN)
if stride == 1: # unit (b)
output = tf.nn.relu(shortcut + l)
else: # unit (c)
shortcut = AvgPooling('avgpool', shortcut, 3, 2, padding='SAME')
output = tf.concat([shortcut, tf.nn.relu(l)], axis=1)
return output
with argscope([Conv2D, MaxPooling, AvgPooling, GlobalAvgPooling, BatchNorm], data_format=self.data_format), \
argscope(Conv2D, use_bias=False):
group = 3
channels = [120, 240, 480]
l = Conv2D('conv1', image, 12, 3, strides=2, activation=BNReLU)
# See Table 1 & 2 in https://arxiv.org/abs/1707.01083
group = args.group
channels = {
3: [240, 480, 960],
4: [272, 544, 1088],
8: [384, 768, 1536]
}
mul = group * 4 # #chan has to be a multiple of this number
channels = [int(math.ceil(x * args.ratio / mul) * mul)
for x in channels[group]]
# The first channel must be a multiple of group
first_chan = int(math.ceil(24 * args.ratio / group) * group)
logger.info("#Channels: " + str([first_chan] + channels))
l = Conv2D('conv1', image, first_chan, 3, strides=2, activation=BNReLU)
l = MaxPooling('pool1', l, 3, 2, padding='SAME')
with tf.variable_scope('group1'):
for i in range(4):
with tf.variable_scope('block{}'.format(i)):
l = shufflenet_unit(l, channels[0], group, 2 if i == 0 else 1)
with tf.variable_scope('group2'):
for i in range(8):
with tf.variable_scope('block{}'.format(i)):
l = shufflenet_unit(l, channels[1], group, 2 if i == 0 else 1)
l = shufflenet_stage('group1', l, channels[0], 4, group)
l = shufflenet_stage('group2', l, channels[1], 8, group)
l = shufflenet_stage('group3', l, channels[2], 4, group)
with tf.variable_scope('group3'):
for i in range(4):
with tf.variable_scope('block{}'.format(i)):
l = shufflenet_unit(l, channels[2], group, 2 if i == 0 else 1)
l = GlobalAvgPooling('gap', l)
logits = FullyConnected('linear', l, 1000)
return logits
......@@ -179,6 +192,8 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--ratio', type=float, default=0.5, choices=[1., 0.5, 0.25])
parser.add_argument('--group', type=int, default=3, choices=[3, 4, 8])
parser.add_argument('--load', help='load model')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--flops', action='store_true', help='print flops and exit')
......@@ -210,7 +225,8 @@ if __name__ == '__main__':
cmd='op',
options=tf.profiler.ProfileOptionBuilder.float_operation())
else:
logger.set_logger_dir(os.path.join('train_log', 'shufflenet'))
logger.set_logger_dir(os.path.join(
'train_log', 'shufflenet-{}x-g={}'.format(args.ratio, args.group)))
nr_tower = max(get_num_gpu(), 1)
config = get_config(model, nr_tower)
......
......@@ -92,7 +92,7 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
They are very similar in speed, but `internal_update=True` can be used
when you have conditionals in your model, or when you have multiple networks to train.
Corresponding TF issue: https://github.com/tensorflow/tensorflow/issues/14699
sync_statistics (str or None): one of None "nccl", or "horovod".
sync_statistics (str or None): one of None, "nccl", or "horovod".
By default (None), it uses statistics of the input tensor to normalize.
This is the standard way BatchNorm was done in most frameworks.
......
......@@ -251,7 +251,7 @@ class ScaleGradient(MapGradient):
if re.match(regex, varname):
if self._verbose:
logger.info("Apply lr multiplier {} for {}".format(val, varname))
logger.info("Gradient of '{}' is multipled by {}".format(varname, val))
if val != 0: # skip zero to speed up
return grad * val
else:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment