Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
e5ff50e7
Commit
e5ff50e7
authored
Oct 18, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
a better TowerTensorHandle to access tensors (currently for predictor only) (#318)
parent
9911b234
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
158 additions
and
45 deletions
+158
-45
.github/ISSUE_TEMPLATE.md
.github/ISSUE_TEMPLATE.md
+4
-3
tensorpack/graph_builder/predictor_factory.py
tensorpack/graph_builder/predictor_factory.py
+12
-36
tensorpack/tfutils/common.py
tensorpack/tfutils/common.py
+3
-0
tensorpack/tfutils/tower.py
tensorpack/tfutils/tower.py
+139
-6
No files found.
.github/ISSUE_TEMPLATE.md
View file @
e5ff50e7
...
...
@@ -10,7 +10,8 @@ Feature Requests:
It may not have to be added to tensorpack unless you have a good reason.
3.
Note that we don't implement papers at other's requests.
Usage Questions:
Usage questions are like "How do I do [this specific thing] in tensorpack?".
Usage Questions, e.g.:
"How do I do [this specific thing] in tensorpack?"
"Why certain examples need to be written in this way?"
We don't answer general machine learning questions like:
"I want to do [this machine learning task]. What specific things I need to do?"
"I want to do [this machine learning task]. What specific things
do
I need to do?"
tensorpack/graph_builder/predictor_factory.py
View file @
e5ff50e7
...
...
@@ -4,8 +4,7 @@
import
tensorflow
as
tf
from
..utils
import
logger
from
..tfutils.common
import
get_op_tensor_name
,
get_tensors_by_names
from
..tfutils.tower
import
TowerContext
from
..tfutils.tower
import
TowerContext
,
TowerFuncWrapper
from
..tfutils.collection
import
freeze_collection
from
..utils.naming
import
TOWER_FREEZE_KEYS
from
..input_source
import
PlaceholderInput
...
...
@@ -13,31 +12,6 @@ from ..input_source import PlaceholderInput
__all__
=
[]
class
PredictorTowerHandle
(
object
):
def
__init__
(
self
,
tower_name
,
input_desc_names
,
input_tensors
=
None
):
self
.
_tower_name
=
tower_name
self
.
_input_desc_names
=
[
get_op_tensor_name
(
k
)[
1
]
for
k
in
input_desc_names
]
if
input_tensors
is
not
None
:
self
.
_input_names
=
[
get_op_tensor_name
(
k
.
name
)[
1
]
for
k
in
input_tensors
]
else
:
self
.
_input_names
=
self
.
_input_desc_names
def
get_tensors
(
self
,
names
):
def
maybe_inside_tower
(
name
):
name
=
get_op_tensor_name
(
name
)[
1
]
if
name
in
self
.
_input_names
:
return
name
elif
name
in
self
.
_input_desc_names
:
idx
=
self
.
_input_desc_names
.
index
(
name
)
return
self
.
_input_names
[
idx
]
else
:
# if the name is not a placeholder, use it's name in each tower
return
self
.
_tower_name
+
'/'
+
name
names
=
list
(
map
(
maybe_inside_tower
,
names
))
tensors
=
get_tensors_by_names
(
names
)
return
tensors
class
PredictorFactory
(
object
):
""" Make predictors from :class:`ModelDesc`."""
...
...
@@ -68,18 +42,20 @@ class PredictorFactory(object):
freeze_collection
(
TOWER_FREEZE_KEYS
+
[
tf
.
GraphKeys
.
UPDATE_OPS
]):
# also freeze UPDATE_OPS in inference, because they should never be used
# TODO a better way to log and warn about collection change during build_graph.
inputs_desc
=
self
.
_model
.
get_inputs_desc
()
if
input
is
None
:
input
=
PlaceholderInput
()
input
.
setup
(
self
.
_model
.
get_inputs_desc
())
input
=
input
.
get_input_tensors
()
assert
isinstance
(
input
,
(
list
,
tuple
)),
input
# TODO still using tensors here instead of inputsource
# can be fixed after having towertensorhandle inside modeldesc
self
.
_model
.
build_graph
(
input
)
input
.
setup
(
inputs_desc
)
inputs
=
input
.
get_input_tensors
()
assert
isinstance
(
inputs
,
(
list
,
tuple
)),
inputs
def
tower_func
(
*
inputs
):
self
.
_model
.
build_graph
(
inputs
)
tower_func
=
TowerFuncWrapper
(
tower_func
,
inputs_desc
)
tower_func
(
*
inputs
)
desc_names
=
[
k
.
name
for
k
in
self
.
_model
.
get_inputs_desc
()]
self
.
_names_built
[
tower_name
]
=
PredictorTowerHandle
(
tower_name
,
desc_names
,
input
)
self
.
_names_built
[
tower_name
]
=
tower_func
.
towers
[
0
]
return
self
.
_names_built
[
tower_name
]
def
has_built
(
self
,
tower_name
):
...
...
tensorpack/tfutils/common.py
View file @
e5ff50e7
...
...
@@ -117,6 +117,9 @@ def get_op_or_tensor_by_name(name):
Args:
name (list[str] or str): names of operations or tensors.
Raises:
KeyError, if the name doesn't exist
"""
G
=
tf
.
get_default_graph
()
...
...
tensorpack/tfutils/tower.py
View file @
e5ff50e7
...
...
@@ -4,9 +4,12 @@
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
tensorflow
as
tf
from
.common
import
get_tf_version_number
from
six.moves
import
zip
__all__
=
[
'get_current_tower_context'
,
'TowerContext'
]
from
..utils
import
logger
from
.common
import
get_tf_version_number
,
get_op_or_tensor_by_name
,
get_op_tensor_name
__all__
=
[
'get_current_tower_context'
,
'TowerContext'
,
'TowerFuncWrapper'
]
_CurrentTowerContext
=
None
...
...
@@ -54,6 +57,9 @@ class TowerContext(object):
"""
return
self
.
is_main_training_tower
or
len
(
self
.
_vs_name
)
>
0
# TODO clarify the interface on name/vs_name/ns_name.
# TODO in inference, vs_name may need to be different from ns_name.i
# How to deal with this?
@
property
def
name
(
self
):
return
self
.
_name
...
...
@@ -62,6 +68,10 @@ class TowerContext(object):
def
vs_name
(
self
):
return
self
.
_vs_name
@
property
def
ns_name
(
self
):
return
self
.
_name
def
filter_vars_by_vs_name
(
self
,
varlist
):
"""
Filter the list and only keep those under the current variable scope.
...
...
@@ -85,13 +95,12 @@ class TowerContext(object):
def
__enter__
(
self
):
global
_CurrentTowerContext
assert
_CurrentTowerContext
is
None
,
\
"Nesting TowerContext!"
assert
_CurrentTowerContext
is
None
,
"Cannot nest TowerContext!"
_CurrentTowerContext
=
self
self
.
_ctxs
=
[]
curr_vs
=
tf
.
get_variable_scope
()
assert
curr_vs
.
name
==
''
,
"
Nesting
TowerContext with an existing variable scope!"
# assert empty name scope as well (>1.2.1?)
assert
curr_vs
.
name
==
''
,
"
Cannot nest
TowerContext with an existing variable scope!"
if
len
(
self
.
_name
):
if
not
self
.
is_training
:
# if not training, should handle reuse outside
...
...
@@ -114,6 +123,7 @@ class TowerContext(object):
c
.
__enter__
()
if
get_tf_version_number
()
>=
1.2
:
# check that ns_name is always the same as _name
ns
=
tf
.
get_default_graph
()
.
get_name_scope
()
assert
ns
==
self
.
_name
,
\
"Name conflict: name_scope inside tower '{}' becomes '{}'!"
.
format
(
self
.
_name
,
ns
)
\
...
...
@@ -135,3 +145,126 @@ class TowerContext(object):
def
get_current_tower_context
():
global
_CurrentTowerContext
return
_CurrentTowerContext
class
TowerFuncWrapper
(
object
):
"""
A wrapper around a function which builds one tower (one replicate of the model).
It keeps track of the name scope, variable scope and input/output tensors
each time the function is called.
"""
def
__init__
(
self
,
tower_fn
,
inputs_desc
=
None
):
"""
Args:
tower_func: a function which builds one tower in the graph.
It takes several input tensors and could return anything.
inputs_desc ([InputDesc]): use this to figure out the right name for the input tensors.
"""
self
.
_tower_fn
=
tower_fn
self
.
_inputs_desc
=
inputs_desc
self
.
_towers
=
[]
def
__call__
(
self
,
*
args
):
ctx
=
get_current_tower_context
()
assert
ctx
is
not
None
,
"Function must be called under TowerContext!"
output
=
self
.
_tower_fn
(
*
args
)
handle
=
TowerTensorHandle
(
ctx
,
args
,
output
,
self
.
_inputs_desc
)
self
.
_towers
.
append
(
handle
)
return
output
@
property
def
towers
(
self
):
# TODO another wrapper around towerhandlelist
return
self
.
_towers
class
TowerTensorHandle
(
object
):
"""
When a function is called multiple times under each tower,
it becomes hard to keep track of the scope and access those tensors
in each tower.
This class provides easy access to the tensors as well as the
inputs/outputs created in each tower.
"""
# TODO hide it from doc
def
__init__
(
self
,
ctx
,
input
,
output
,
inputs_desc
=
None
):
"""
Don't use it because you never need to create the handle by yourself.
"""
self
.
_ctx
=
ctx
self
.
_extra_tensor_names
=
{}
if
inputs_desc
is
not
None
:
assert
len
(
inputs_desc
)
==
len
(
input
)
self
.
_extra_tensor_names
=
{
get_op_tensor_name
(
x
.
name
)[
1
]:
y
for
x
,
y
in
zip
(
inputs_desc
,
input
)}
self
.
_input
=
input
self
.
_output
=
output
@
property
def
vs_name
(
self
):
return
self
.
_ctx
.
vs_name
@
property
def
ns_name
(
self
):
return
self
.
_ctx
.
ns_name
def
get_tensor
(
self
,
name
):
"""
Get a tensor in this tower. The name can be:
1. The name of the tensor without any tower prefix.
2. The name of an :class:`InputDesc`, if it is used when building the tower.
"""
name
=
get_op_tensor_name
(
name
)[
1
]
if
len
(
self
.
ns_name
):
name_with_ns
=
self
.
ns_name
+
"/"
+
name
else
:
name_with_ns
=
name
try
:
ret
=
get_op_or_tensor_by_name
(
name_with_ns
)
except
KeyError
:
if
name
in
self
.
_extra_tensor_names
:
return
self
.
_extra_tensor_names
[
name
]
raise
else
:
if
name
in
self
.
_extra_tensor_names
:
logger
.
warn
(
"'{}' may refer to both the tensor '{}' or the input '{}'."
.
format
(
name
,
ret
.
name
,
self
.
_extra_tensor_names
[
name
]
.
name
)
+
"Assuming it is the tensor '{}'."
.
format
(
ret
.
name
))
return
ret
def
get_tensors
(
self
,
names
):
return
[
self
.
get_tensor
(
name
)
for
name
in
names
]
def
__getitem__
(
self
,
name
):
return
self
.
get_tensor
(
name
)
def
get_variable
(
self
,
name
):
"""
Get a variable used in this tower.
"""
name
=
get_op_tensor_name
(
name
)[
1
]
if
len
(
self
.
vs_name
):
name_with_vs
=
self
.
vs_name
+
"/"
+
name
else
:
name_with_vs
=
name
return
get_op_or_tensor_by_name
(
name_with_vs
)
@
property
def
input
(
self
):
"""
The list of input tensors used to build the tower.
"""
return
self
.
_input
@
property
def
output
(
self
):
"""
The output returned by the tower function.
"""
return
self
.
_output
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment