Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
e119ef75
Commit
e119ef75
authored
Oct 16, 2018
by
Patrick Wieschollek
Committed by
Yuxin Wu
Oct 16, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
simplify GAN usage (#917)
* simplify GAN usage * move implementation to class * small rename
parent
e9363dfd
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
60 additions
and
55 deletions
+60
-55
examples/GAN/CycleGAN.py
examples/GAN/CycleGAN.py
+1
-1
examples/GAN/GAN.py
examples/GAN/GAN.py
+57
-47
examples/GAN/Image2Image.py
examples/GAN/Image2Image.py
+2
-7
No files found.
examples/GAN/CycleGAN.py
View file @
e119ef75
...
...
@@ -212,7 +212,7 @@ if __name__ == '__main__':
df
=
get_data
(
args
.
data
)
df
=
PrintData
(
df
)
data
=
StagingInput
(
QueueInput
(
df
)
)
data
=
QueueInput
(
df
)
GANTrainer
(
data
,
Model
())
.
train_with_defaults
(
callbacks
=
[
...
...
examples/GAN/GAN.py
View file @
e119ef75
...
...
@@ -4,12 +4,13 @@
import
tensorflow
as
tf
import
numpy
as
np
from
tensorpack
import
(
TowerTrainer
,
ModelDescBase
,
DataFlow
,
StagingInput
)
from
tensorpack
import
(
TowerTrainer
,
StagingInput
,
ModelDescBase
,
DataFlow
)
from
tensorpack.tfutils.tower
import
TowerContext
,
TowerFuncWrapper
from
tensorpack.graph_builder
import
DataParallelBuilder
,
LeastLoadedDeviceSetter
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.utils.argtools
import
memoized
from
tensorpack.utils.develop
import
deprecated
class
GANModelDesc
(
ModelDescBase
):
...
...
@@ -73,7 +74,8 @@ class GANModelDesc(ModelDescBase):
class
GANTrainer
(
TowerTrainer
):
def
__init__
(
self
,
input
,
model
):
def
__init__
(
self
,
input
,
model
,
num_gpu
=
1
):
"""
Args:
input (InputSource):
...
...
@@ -81,11 +83,20 @@ class GANTrainer(TowerTrainer):
"""
super
(
GANTrainer
,
self
)
.
__init__
()
assert
isinstance
(
model
,
GANModelDesc
),
model
inputs_desc
=
model
.
get_inputs_desc
()
if
num_gpu
>
1
:
input
=
StagingInput
(
input
)
# Setup input
cbs
=
input
.
setup
(
inputs_desc
)
cbs
=
input
.
setup
(
model
.
get_inputs_desc
()
)
self
.
register_callback
(
cbs
)
if
num_gpu
<=
1
:
self
.
_build_gan_trainer
(
input
,
model
)
else
:
self
.
_build_multigpu_gan_trainer
(
input
,
model
,
num_gpu
)
def
_build_gan_trainer
(
self
,
input
,
model
):
"""
We need to set tower_func because it's a TowerTrainer,
and only TowerTrainer supports automatic graph creation for inference during training.
...
...
@@ -94,7 +105,7 @@ class GANTrainer(TowerTrainer):
not needed. Just calling model.build_graph directly is OK.
"""
# Build the graph
self
.
tower_func
=
TowerFuncWrapper
(
model
.
build_graph
,
inputs_desc
)
self
.
tower_func
=
TowerFuncWrapper
(
model
.
build_graph
,
model
.
get_inputs_desc
()
)
with
TowerContext
(
''
,
is_training
=
True
):
self
.
tower_func
(
*
input
.
get_input_tensors
())
opt
=
model
.
get_optimizer
()
...
...
@@ -107,6 +118,46 @@ class GANTrainer(TowerTrainer):
d_min
=
opt
.
minimize
(
model
.
d_loss
,
var_list
=
model
.
d_vars
,
name
=
'd_op'
)
self
.
train_op
=
d_min
def
_build_multigpu_gan_trainer
(
self
,
input
,
model
,
num_gpu
):
assert
num_gpu
>
1
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
range
(
num_gpu
)]
# Build the graph with multi-gpu replication
def
get_cost
(
*
inputs
):
model
.
build_graph
(
*
inputs
)
return
[
model
.
d_loss
,
model
.
g_loss
]
self
.
tower_func
=
TowerFuncWrapper
(
get_cost
,
model
.
get_inputs_desc
())
devices
=
[
LeastLoadedDeviceSetter
(
d
,
raw_devices
)
for
d
in
raw_devices
]
cost_list
=
DataParallelBuilder
.
build_on_towers
(
list
(
range
(
num_gpu
)),
lambda
:
self
.
tower_func
(
*
input
.
get_input_tensors
()),
devices
)
# For simplicity, average the cost here. It might be faster to average the gradients
with
tf
.
name_scope
(
'optimize'
):
d_loss
=
tf
.
add_n
([
x
[
0
]
for
x
in
cost_list
])
*
(
1.0
/
num_gpu
)
g_loss
=
tf
.
add_n
([
x
[
1
]
for
x
in
cost_list
])
*
(
1.0
/
num_gpu
)
opt
=
model
.
get_optimizer
()
# run one d_min after one g_min
g_min
=
opt
.
minimize
(
g_loss
,
var_list
=
model
.
g_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'g_op'
)
with
tf
.
control_dependencies
([
g_min
]):
d_min
=
opt
.
minimize
(
d_loss
,
var_list
=
model
.
d_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'd_op'
)
# Define the training iteration
self
.
train_op
=
d_min
class
MultiGPUGANTrainer
(
GANTrainer
):
"""
A replacement of GANTrainer (optimize d and g one by one) with multi-gpu support.
"""
@
deprecated
(
"Please use GANTrainer and set num_gpu"
,
"2019-01-31"
)
def
__init__
(
self
,
num_gpu
,
input
,
model
):
super
(
MultiGPUGANTrainer
,
self
)
.
__init__
(
input
,
model
,
1
)
class
SeparateGANTrainer
(
TowerTrainer
):
""" A GAN trainer which runs two optimization ops with a certain ratio."""
...
...
@@ -145,47 +196,6 @@ class SeparateGANTrainer(TowerTrainer):
self
.
hooked_sess
.
run
(
self
.
g_min
)
class
MultiGPUGANTrainer
(
TowerTrainer
):
"""
A replacement of GANTrainer (optimize d and g one by one) with multi-gpu support.
"""
def
__init__
(
self
,
num_gpu
,
input
,
model
):
super
(
MultiGPUGANTrainer
,
self
)
.
__init__
()
assert
num_gpu
>
1
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
range
(
num_gpu
)]
# Setup input
input
=
StagingInput
(
input
)
cbs
=
input
.
setup
(
model
.
get_inputs_desc
())
self
.
register_callback
(
cbs
)
# Build the graph with multi-gpu replication
def
get_cost
(
*
inputs
):
model
.
build_graph
(
*
inputs
)
return
[
model
.
d_loss
,
model
.
g_loss
]
self
.
tower_func
=
TowerFuncWrapper
(
get_cost
,
model
.
get_inputs_desc
())
devices
=
[
LeastLoadedDeviceSetter
(
d
,
raw_devices
)
for
d
in
raw_devices
]
cost_list
=
DataParallelBuilder
.
build_on_towers
(
list
(
range
(
num_gpu
)),
lambda
:
self
.
tower_func
(
*
input
.
get_input_tensors
()),
devices
)
# For simplicity, average the cost here. It might be faster to average the gradients
with
tf
.
name_scope
(
'optimize'
):
d_loss
=
tf
.
add_n
([
x
[
0
]
for
x
in
cost_list
])
*
(
1.0
/
num_gpu
)
g_loss
=
tf
.
add_n
([
x
[
1
]
for
x
in
cost_list
])
*
(
1.0
/
num_gpu
)
opt
=
model
.
get_optimizer
()
# run one d_min after one g_min
g_min
=
opt
.
minimize
(
g_loss
,
var_list
=
model
.
g_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'g_op'
)
with
tf
.
control_dependencies
([
g_min
]):
d_min
=
opt
.
minimize
(
d_loss
,
var_list
=
model
.
d_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'd_op'
)
# Define the training iteration
self
.
train_op
=
d_min
class
RandomZData
(
DataFlow
):
def
__init__
(
self
,
shape
):
super
(
RandomZData
,
self
)
.
__init__
()
...
...
examples/GAN/Image2Image.py
View file @
e119ef75
...
...
@@ -16,7 +16,7 @@ from tensorpack.utils.gpu import get_num_gpu
from
tensorpack.utils.viz
import
stack_patches
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
GAN
import
GANTrainer
,
MultiGPUGANTrainer
,
GANModelDesc
from
GAN
import
GANTrainer
,
GANModelDesc
"""
To train Image-to-Image translation model with image pairs:
...
...
@@ -217,12 +217,7 @@ if __name__ == '__main__':
logger
.
auto_set_dir
()
data
=
QueueInput
(
get_data
())
nr_tower
=
max
(
get_num_gpu
(),
1
)
if
nr_tower
==
1
:
trainer
=
GANTrainer
(
data
,
Model
())
else
:
trainer
=
MultiGPUGANTrainer
(
nr_tower
,
data
,
Model
())
trainer
=
GANTrainer
(
data
,
Model
(),
get_num_gpu
())
trainer
.
train_with_defaults
(
callbacks
=
[
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment