Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
e02c7995
Commit
e02c7995
authored
Mar 20, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
_build_graph(inputs) -> build_graph(*inputs) (#318)
parent
95bd4af5
Changes
36
Show whitespace changes
Inline
Side-by-side
Showing
36 changed files
with
46 additions
and
90 deletions
+46
-90
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+1
-2
examples/CTC-TIMIT/train-timit.py
examples/CTC-TIMIT/train-timit.py
+1
-2
examples/Char-RNN/char-rnn.py
examples/Char-RNN/char-rnn.py
+1
-3
examples/DeepQNetwork/DQNModel.py
examples/DeepQNetwork/DQNModel.py
+1
-2
examples/DisturbLabel/mnist-disturb.py
examples/DisturbLabel/mnist-disturb.py
+1
-2
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+1
-2
examples/DoReFa-Net/resnet-dorefa.py
examples/DoReFa-Net/resnet-dorefa.py
+1
-2
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+1
-2
examples/DynamicFilterNetwork/steering-filter.py
examples/DynamicFilterNetwork/steering-filter.py
+1
-2
examples/FasterRCNN/train.py
examples/FasterRCNN/train.py
+1
-1
examples/GAN/BEGAN.py
examples/GAN/BEGAN.py
+1
-2
examples/GAN/ConditionalGAN-mnist.py
examples/GAN/ConditionalGAN-mnist.py
+1
-2
examples/GAN/CycleGAN.py
examples/GAN/CycleGAN.py
+1
-2
examples/GAN/DCGAN.py
examples/GAN/DCGAN.py
+1
-2
examples/GAN/DiscoGAN-CelebA.py
examples/GAN/DiscoGAN-CelebA.py
+1
-2
examples/GAN/GAN.py
examples/GAN/GAN.py
+1
-1
examples/GAN/Image2Image.py
examples/GAN/Image2Image.py
+1
-2
examples/GAN/Improved-WGAN.py
examples/GAN/Improved-WGAN.py
+1
-2
examples/GAN/InfoGAN-mnist.py
examples/GAN/InfoGAN-mnist.py
+1
-2
examples/HED/hed.py
examples/HED/hed.py
+1
-2
examples/ImageNetModels/imagenet_utils.py
examples/ImageNetModels/imagenet_utils.py
+1
-2
examples/ImageNetModels/inception-bn.py
examples/ImageNetModels/inception-bn.py
+1
-2
examples/PennTreebank/PTB-LSTM.py
examples/PennTreebank/PTB-LSTM.py
+1
-2
examples/ResNet/cifar10-preact18-mixup.py
examples/ResNet/cifar10-preact18-mixup.py
+1
-2
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+1
-2
examples/ResNet/load-resnet.py
examples/ResNet/load-resnet.py
+1
-2
examples/Saliency/CAM-resnet.py
examples/Saliency/CAM-resnet.py
+1
-2
examples/Saliency/saliency-maps.py
examples/Saliency/saliency-maps.py
+1
-2
examples/SimilarityLearning/mnist-embeddings.py
examples/SimilarityLearning/mnist-embeddings.py
+4
-10
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+1
-3
examples/SuperResolution/enet-pat.py
examples/SuperResolution/enet-pat.py
+2
-2
examples/basics/cifar-convnet.py
examples/basics/cifar-convnet.py
+1
-2
examples/basics/mnist-tflayers.py
examples/basics/mnist-tflayers.py
+1
-4
examples/basics/mnist-visualizations.py
examples/basics/mnist-visualizations.py
+2
-4
examples/basics/svhn-digit-convnet.py
examples/basics/svhn-digit-convnet.py
+1
-3
examples/boilerplate.py
examples/boilerplate.py
+6
-7
No files found.
examples/A3C-Gym/train-atari.py
View file @
e02c7995
...
...
@@ -94,8 +94,7 @@ class Model(ModelDesc):
value
=
FullyConnected
(
'fc-v'
,
l
,
1
)
return
logits
,
value
def
_build_graph
(
self
,
inputs
):
state
,
action
,
futurereward
,
action_prob
=
inputs
def
build_graph
(
self
,
state
,
action
,
futurereward
,
action_prob
):
logits
,
value
=
self
.
_get_NN_prediction
(
state
)
value
=
tf
.
squeeze
(
value
,
[
1
],
name
=
'pred_value'
)
# (B,)
policy
=
tf
.
nn
.
softmax
(
logits
,
name
=
'policy'
)
...
...
examples/CTC-TIMIT/train-timit.py
View file @
e02c7995
...
...
@@ -33,8 +33,7 @@ class Model(ModelDesc):
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'seqlen'
),
# b
]
def
_build_graph
(
self
,
inputs
):
feat
,
labelidx
,
labelvalue
,
labelshape
,
seqlen
=
inputs
def
build_graph
(
self
,
feat
,
labelidx
,
labelvalue
,
labelshape
,
seqlen
):
label
=
tf
.
SparseTensor
(
labelidx
,
labelvalue
,
labelshape
)
cell
=
rnn
.
MultiRNNCell
([
rnn
.
LSTMBlockCell
(
num_units
=
HIDDEN
)
for
_
in
range
(
NLAYER
)])
...
...
examples/Char-RNN/char-rnn.py
View file @
e02c7995
...
...
@@ -74,9 +74,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
int32
,
(
None
,
param
.
seq_len
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,
param
.
seq_len
),
'nextinput'
)]
def
_build_graph
(
self
,
inputs
):
input
,
nextinput
=
inputs
def
build_graph
(
self
,
input
,
nextinput
):
cell
=
rnn
.
MultiRNNCell
([
rnn
.
LSTMBlockCell
(
num_units
=
param
.
rnn_size
)
for
_
in
range
(
param
.
num_rnn_layer
)])
...
...
examples/DeepQNetwork/DQNModel.py
View file @
e02c7995
...
...
@@ -43,8 +43,7 @@ class Model(ModelDesc):
def
get_DQN_prediction
(
self
,
image
):
return
self
.
_get_DQN_prediction
(
image
)
def
_build_graph
(
self
,
inputs
):
comb_state
,
action
,
reward
,
isOver
=
inputs
def
build_graph
(
self
,
comb_state
,
action
,
reward
,
isOver
):
comb_state
=
tf
.
cast
(
comb_state
,
tf
.
float32
)
state
=
tf
.
slice
(
comb_state
,
[
0
,
0
,
0
,
0
],
[
-
1
,
-
1
,
-
1
,
self
.
channel
],
name
=
'state'
)
self
.
predict_value
=
self
.
get_DQN_prediction
(
state
)
...
...
examples/DisturbLabel/mnist-disturb.py
View file @
e02c7995
...
...
@@ -29,8 +29,7 @@ IMAGE_SIZE = 28
class
Model
(
mnist_example
.
Model
):
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
tf
.
expand_dims
(
image
,
3
)
logits
=
(
LinearWrap
(
image
)
# the starting brace is oactivationy for line-breaking
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
e02c7995
...
...
@@ -81,8 +81,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
255.0
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/DoReFa-Net/resnet-dorefa.py
View file @
e02c7995
...
...
@@ -36,8 +36,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
256.0
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
e02c7995
...
...
@@ -47,8 +47,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
40
,
40
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
is_training
=
get_current_tower_context
()
.
is_training
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
...
...
examples/DynamicFilterNetwork/steering-filter.py
View file @
e02c7995
...
...
@@ -120,9 +120,8 @@ class Model(ModelDesc):
logger
.
info
(
'Parameter net output: {}'
.
format
(
pred_filter
.
get_shape
()
.
as_list
()))
return
pred_filter
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
theta
,
image
,
gt_image
,
gt_filter
):
kernel_size
=
9
theta
,
image
,
gt_image
,
gt_filter
=
inputs
image
=
image
gt_image
=
gt_image
...
...
examples/FasterRCNN/train.py
View file @
e02c7995
...
...
@@ -90,7 +90,7 @@ class Model(ModelDesc):
-
1
,
-
1
]),
name
=
'fm_anchors'
)
return
fm_anchors
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
*
inputs
):
is_training
=
get_current_tower_context
()
.
is_training
if
config
.
MODE_MASK
:
image
,
anchor_labels
,
anchor_boxes
,
gt_boxes
,
gt_labels
,
gt_masks
=
inputs
...
...
examples/GAN/BEGAN.py
View file @
e02c7995
...
...
@@ -73,8 +73,7 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fc'
,
NH
)())
return
l
def
_build_graph
(
self
,
inputs
):
image_pos
=
inputs
[
0
]
def
build_graph
(
self
,
image_pos
):
image_pos
=
image_pos
/
128.0
-
1
z
=
tf
.
random_uniform
([
args
.
batch
,
args
.
z_dim
],
minval
=-
1
,
maxval
=
1
,
name
=
'z_train'
)
...
...
examples/GAN/ConditionalGAN-mnist.py
View file @
e02c7995
...
...
@@ -84,8 +84,7 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fct'
,
1
,
activation
=
tf
.
identity
)())
return
l
def
_build_graph
(
self
,
inputs
):
image_pos
,
y
=
inputs
def
build_graph
(
self
,
image_pos
,
y
):
image_pos
=
tf
.
expand_dims
(
image_pos
*
2.0
-
1
,
-
1
)
y
=
tf
.
one_hot
(
y
,
10
,
name
=
'label_onehot'
)
...
...
examples/GAN/CycleGAN.py
View file @
e02c7995
...
...
@@ -85,8 +85,7 @@ class Model(GANModelDesc):
.
Conv2D
(
'conv4'
,
1
,
strides
=
1
,
activation
=
tf
.
identity
,
use_bias
=
True
)())
return
l
def
_build_graph
(
self
,
inputs
):
A
,
B
=
inputs
def
build_graph
(
self
,
A
,
B
):
with
tf
.
name_scope
(
'preprocess'
):
A
=
tf
.
transpose
(
A
/
128.0
-
1.0
,
[
0
,
3
,
1
,
2
])
B
=
tf
.
transpose
(
B
/
128.0
-
1.0
,
[
0
,
3
,
1
,
2
])
...
...
examples/GAN/DCGAN.py
View file @
e02c7995
...
...
@@ -76,8 +76,7 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fct'
,
1
)())
return
l
def
_build_graph
(
self
,
inputs
):
image_pos
=
inputs
[
0
]
def
build_graph
(
self
,
image_pos
):
image_pos
=
image_pos
/
128.0
-
1
z
=
tf
.
random_uniform
([
self
.
batch
,
self
.
zdim
],
-
1
,
1
,
name
=
'z_train'
)
...
...
examples/GAN/DiscoGAN-CelebA.py
View file @
e02c7995
...
...
@@ -78,8 +78,7 @@ class Model(GANModelDesc):
add_moving_summary
(
ret
)
return
ret
def
_build_graph
(
self
,
inputs
):
A
,
B
=
inputs
def
build_graph
(
self
,
A
,
B
):
A
=
tf
.
transpose
(
A
/
255.0
,
[
0
,
3
,
1
,
2
])
B
=
tf
.
transpose
(
B
/
255.0
,
[
0
,
3
,
1
,
2
])
...
...
examples/GAN/GAN.py
View file @
e02c7995
...
...
@@ -61,7 +61,7 @@ class GANModelDesc(ModelDescBase):
add_moving_summary
(
self
.
g_loss
,
self
.
d_loss
,
d_accuracy
,
g_accuracy
)
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
*
inputs
):
"""
Have to build one tower and set the following attributes:
g_loss, d_loss, g_vars, d_vars.
...
...
examples/GAN/Image2Image.py
View file @
e02c7995
...
...
@@ -117,8 +117,7 @@ class Model(GANModelDesc):
.
Conv2D
(
'convlast'
,
1
,
strides
=
1
,
padding
=
'VALID'
,
activation
=
tf
.
identity
)())
return
l
def
_build_graph
(
self
,
inputs
):
input
,
output
=
inputs
def
build_graph
(
self
,
input
,
output
):
input
,
output
=
input
/
128.0
-
1
,
output
/
128.0
-
1
with
argscope
([
Conv2D
,
Conv2DTranspose
],
kernel_initializer
=
tf
.
truncated_normal_initializer
(
stddev
=
0.02
)):
...
...
examples/GAN/Improved-WGAN.py
View file @
e02c7995
...
...
@@ -41,8 +41,7 @@ class Model(DCGAN.Model):
.
FullyConnected
(
'fct'
,
1
,
activation
=
tf
.
identity
)())
return
tf
.
reshape
(
l
,
[
-
1
])
def
_build_graph
(
self
,
inputs
):
image_pos
=
inputs
[
0
]
def
build_graph
(
self
,
image_pos
):
image_pos
=
image_pos
/
128.0
-
1
z
=
tf
.
random_normal
([
self
.
batch
,
self
.
zdim
],
name
=
'z_train'
)
...
...
examples/GAN/InfoGAN-mnist.py
View file @
e02c7995
...
...
@@ -138,8 +138,7 @@ class Model(GANModelDesc):
.
FullyConnected
(
'fce-out'
,
DIST_PARAM_DIM
)())
return
logits
,
encoder
def
_build_graph
(
self
,
inputs
):
real_sample
=
inputs
[
0
]
def
build_graph
(
self
,
real_sample
):
real_sample
=
tf
.
expand_dims
(
real_sample
,
-
1
)
# sample the latent code:
...
...
examples/HED/hed.py
View file @
e02c7995
...
...
@@ -48,8 +48,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
None
,
None
,
3
],
'image'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
,
None
,
None
],
'edgemap'
)]
def
_build_graph
(
self
,
inputs
):
image
,
edgemap
=
inputs
def
build_graph
(
self
,
image
,
edgemap
):
image
=
image
-
tf
.
constant
([
104
,
116
,
122
],
dtype
=
'float32'
)
edgemap
=
tf
.
expand_dims
(
edgemap
,
3
,
name
=
'edgemap4d'
)
...
...
examples/ImageNetModels/imagenet_utils.py
View file @
e02c7995
...
...
@@ -152,8 +152,7 @@ class ImageNetModel(ModelDesc):
return
[
tf
.
placeholder
(
self
.
image_dtype
,
[
None
,
self
.
image_shape
,
self
.
image_shape
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
ImageNetModel
.
image_preprocess
(
image
,
bgr
=
True
)
if
self
.
data_format
==
'NCHW'
:
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
...
...
examples/ImageNetModels/inception-bn.py
View file @
e02c7995
...
...
@@ -28,8 +28,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
INPUT_SHAPE
,
INPUT_SHAPE
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
128.0
def
inception
(
name
,
x
,
nr1x1
,
nr3x3r
,
nr3x3
,
nr233r
,
nr233
,
nrpool
,
pooltype
):
...
...
examples/PennTreebank/PTB-LSTM.py
View file @
e02c7995
...
...
@@ -50,9 +50,8 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
int32
,
(
None
,
SEQ_LEN
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,
SEQ_LEN
),
'nextinput'
)]
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
input
,
nextinput
):
is_training
=
get_current_tower_context
()
.
is_training
input
,
nextinput
=
inputs
initializer
=
tf
.
random_uniform_initializer
(
-
0.05
,
0.05
)
def
get_basic_cell
():
...
...
examples/ResNet/cifar10-preact18-mixup.py
View file @
e02c7995
...
...
@@ -43,9 +43,8 @@ class ResNet_Cifar(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
32
,
32
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
float32
,
[
None
,
CLASS_NUM
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
image
,
label
):
assert
tf
.
test
.
is_gpu_available
()
image
,
label
=
inputs
MEAN_IMAGE
=
tf
.
constant
([
0.4914
,
0.4822
,
0.4465
],
dtype
=
tf
.
float32
)
STD_IMAGE
=
tf
.
constant
([
0.2023
,
0.1994
,
0.2010
],
dtype
=
tf
.
float32
)
...
...
examples/ResNet/cifar10-resnet.py
View file @
e02c7995
...
...
@@ -44,8 +44,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
32
,
32
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
128.0
assert
tf
.
test
.
is_gpu_available
()
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
...
...
examples/ResNet/load-resnet.py
View file @
e02c7995
...
...
@@ -32,8 +32,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
224
,
224
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
blocks
=
CFG
[
DEPTH
]
bottleneck
=
functools
.
partial
(
resnet_bottleneck
,
stride_first
=
True
)
...
...
examples/Saliency/CAM-resnet.py
View file @
e02c7995
...
...
@@ -35,8 +35,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
uint8
,
[
None
,
INPUT_SHAPE
,
INPUT_SHAPE
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image_preprocess
(
image
,
bgr
=
True
)
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
...
...
examples/Saliency/saliency-maps.py
View file @
e02c7995
...
...
@@ -57,8 +57,7 @@ class Model(tp.ModelDescBase):
def
inputs
(
self
):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
IMAGE_SIZE
,
IMAGE_SIZE
,
3
),
'image'
)]
def
_build_graph
(
self
,
inputs
):
orig_image
=
inputs
[
0
]
def
build_graph
(
self
,
orig_image
):
mean
=
tf
.
get_variable
(
'resnet_v1_50/mean_rgb'
,
shape
=
[
3
])
with
guided_relu
():
with
slim
.
arg_scope
(
resnet_v1
.
resnet_arg_scope
(
is_training
=
False
)):
...
...
examples/SimilarityLearning/mnist-embeddings.py
View file @
e02c7995
...
...
@@ -241,9 +241,7 @@ class SiameseModel(EmbeddingModel):
tf
.
placeholder
(
tf
.
float32
,
(
None
,
28
,
28
),
'input_y'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
# get inputs
x
,
y
,
label
=
inputs
def
build_graph
(
self
,
x
,
y
,
label
):
# embed them
x
,
y
=
self
.
embed
([
x
,
y
])
...
...
@@ -261,8 +259,7 @@ class SiameseModel(EmbeddingModel):
class
CosineModel
(
SiameseModel
):
def
_build_graph
(
self
,
inputs
):
x
,
y
,
label
=
inputs
def
build_graph
(
self
,
x
,
y
,
label
):
x
,
y
=
self
.
embed
([
x
,
y
])
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
...
...
@@ -289,8 +286,7 @@ class TripletModel(EmbeddingModel):
def
loss
(
self
,
a
,
p
,
n
):
return
triplet_loss
(
a
,
p
,
n
,
5.
,
extra
=
True
,
scope
=
"loss"
)
def
_build_graph
(
self
,
inputs
):
a
,
p
,
n
=
inputs
def
build_graph
(
self
,
a
,
p
,
n
):
a
,
p
,
n
=
self
.
embed
([
a
,
p
,
n
])
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
...
...
@@ -319,9 +315,7 @@ class CenterModel(EmbeddingModel):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
28
,
28
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
# get inputs
x
,
label
=
inputs
def
build_graph
(
self
,
x
,
label
):
# embed them
x
=
self
.
embed
(
x
)
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
e02c7995
...
...
@@ -24,13 +24,11 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
,
2
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
image
,
label
):
xys
=
np
.
array
([(
y
,
x
,
1
)
for
y
in
range
(
WARP_TARGET_SIZE
)
for
x
in
range
(
WARP_TARGET_SIZE
)],
dtype
=
'float32'
)
xys
=
tf
.
constant
(
xys
,
dtype
=
tf
.
float32
,
name
=
'xys'
)
# p x 3
image
,
label
=
inputs
image
=
image
/
255.0
-
0.5
# bhw2
def
get_stn
(
image
):
...
...
examples/SuperResolution/enet-pat.py
View file @
e02c7995
...
...
@@ -52,9 +52,9 @@ class Model(GANModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
self
.
height
*
1
,
self
.
width
*
1
,
CHANNELS
),
'Ilr'
),
tf
.
placeholder
(
tf
.
float32
,
(
None
,
self
.
height
*
4
,
self
.
width
*
4
,
CHANNELS
),
'Ihr'
)]
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
Ilr
,
Ihr
):
Ilr
,
Ihr
=
Ilr
/
255.0
,
Ihr
/
255.0
ctx
=
get_current_tower_context
()
Ilr
,
Ihr
=
inputs
[
0
]
/
255.0
,
inputs
[
1
]
/
255.0
Ibicubic
=
tf
.
image
.
resize_bicubic
(
Ilr
,
[
4
*
self
.
height
,
4
*
self
.
width
],
align_corners
=
True
,
name
=
'bicubic_baseline'
)
# (0,1)
...
...
examples/basics/cifar-convnet.py
View file @
e02c7995
...
...
@@ -30,8 +30,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
30
,
30
,
3
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
is_training
=
get_current_tower_context
()
.
is_training
keep_prob
=
tf
.
constant
(
0.5
if
is_training
else
1.0
)
...
...
examples/basics/mnist-tflayers.py
View file @
e02c7995
...
...
@@ -31,10 +31,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
# inputs contains a list of input variables defined above
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
# In tensorflow, inputs to convolution function are assumed to be
# NHWC. Add a single channel here.
image
=
tf
.
expand_dims
(
image
,
3
)
...
...
examples/basics/mnist-visualizations.py
View file @
e02c7995
...
...
@@ -72,9 +72,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
tf
.
expand_dims
(
image
*
2
-
1
,
3
)
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
tf
.
nn
.
relu
,
out_channel
=
32
):
...
...
@@ -103,7 +101,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
accuracy
=
tf
.
reduce_mean
(
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
name
=
'accuracy'
)
tf
.
reduce_mean
(
tf
.
to_float
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
1
)),
name
=
'accuracy'
)
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
...
...
examples/basics/svhn-digit-convnet.py
View file @
e02c7995
...
...
@@ -26,9 +26,7 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
[
None
,
40
,
40
,
3
],
'input'
),
tf
.
placeholder
(
tf
.
int32
,
[
None
],
'label'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
def
build_graph
(
self
,
image
,
label
):
image
=
image
/
128.0
-
1
with
argscope
(
Conv2D
,
activation
=
BNReLU
,
use_bias
=
False
):
...
...
examples/boilerplate.py
View file @
e02c7995
...
...
@@ -20,15 +20,14 @@ CHANNELS = 3
class
Model
(
ModelDesc
):
def
inputs
(
self
):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
CHANNELS
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'
label
'
)]
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
SHAPE
,
SHAPE
,
CHANNELS
),
'input
1
'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'
input2
'
)]
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
=
image
*
2
-
1
def
build_graph
(
self
,
input1
,
input2
):
self
.
cost
=
tf
.
identity
(
0.
,
name
=
'total_costs'
)
summary
.
add_moving_summary
(
self
.
cost
)
cost
=
tf
.
identity
(
input1
-
input2
,
name
=
'total_costs'
)
summary
.
add_moving_summary
(
cost
)
return
cost
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
5e-3
,
trainable
=
False
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment