Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
95bd4af5
Commit
95bd4af5
authored
Mar 20, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
self.cost -> return cost (#318)
parent
a1e107d9
Changes
25
Hide whitespace changes
Inline
Side-by-side
Showing
25 changed files
with
70 additions
and
64 deletions
+70
-64
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+4
-5
examples/CTC-TIMIT/train-timit.py
examples/CTC-TIMIT/train-timit.py
+3
-2
examples/Char-RNN/char-rnn.py
examples/Char-RNN/char-rnn.py
+3
-2
examples/DeepQNetwork/DQNModel.py
examples/DeepQNetwork/DQNModel.py
+3
-2
examples/DisturbLabel/mnist-disturb.py
examples/DisturbLabel/mnist-disturb.py
+1
-2
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+3
-2
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+3
-2
examples/DynamicFilterNetwork/steering-filter.py
examples/DynamicFilterNetwork/steering-filter.py
+3
-2
examples/FasterRCNN/train.py
examples/FasterRCNN/train.py
+3
-2
examples/HED/hed.py
examples/HED/hed.py
+3
-2
examples/ImageNetModels/imagenet_utils.py
examples/ImageNetModels/imagenet_utils.py
+4
-3
examples/ImageNetModels/inception-bn.py
examples/ImageNetModels/inception-bn.py
+3
-2
examples/PennTreebank/PTB-LSTM.py
examples/PennTreebank/PTB-LSTM.py
+5
-4
examples/ResNet/cifar10-preact18-mixup.py
examples/ResNet/cifar10-preact18-mixup.py
+1
-1
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+1
-1
examples/Saliency/CAM-resnet.py
examples/Saliency/CAM-resnet.py
+1
-1
examples/Saliency/saliency-maps.py
examples/Saliency/saliency-maps.py
+1
-1
examples/SimilarityLearning/mnist-embeddings.py
examples/SimilarityLearning/mnist-embeddings.py
+12
-8
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+1
-1
examples/basics/cifar-convnet.py
examples/basics/cifar-convnet.py
+1
-1
examples/basics/mnist-convnet.py
examples/basics/mnist-convnet.py
+5
-7
examples/basics/mnist-tflayers.py
examples/basics/mnist-tflayers.py
+3
-5
examples/basics/mnist-visualizations.py
examples/basics/mnist-visualizations.py
+1
-4
examples/basics/svhn-digit-convnet.py
examples/basics/svhn-digit-convnet.py
+1
-1
tensorpack/graph_builder/model_desc.py
tensorpack/graph_builder/model_desc.py
+1
-1
No files found.
examples/A3C-Gym/train-atari.py
View file @
95bd4af5
...
@@ -119,13 +119,12 @@ class Model(ModelDesc):
...
@@ -119,13 +119,12 @@ class Model(ModelDesc):
advantage
=
tf
.
sqrt
(
tf
.
reduce_mean
(
tf
.
square
(
advantage
)),
name
=
'rms_advantage'
)
advantage
=
tf
.
sqrt
(
tf
.
reduce_mean
(
tf
.
square
(
advantage
)),
name
=
'rms_advantage'
)
entropy_beta
=
tf
.
get_variable
(
'entropy_beta'
,
shape
=
[],
entropy_beta
=
tf
.
get_variable
(
'entropy_beta'
,
shape
=
[],
initializer
=
tf
.
constant_initializer
(
0.01
),
trainable
=
False
)
initializer
=
tf
.
constant_initializer
(
0.01
),
trainable
=
False
)
self
.
cost
=
tf
.
add_n
([
policy_loss
,
xentropy_loss
*
entropy_beta
,
value_loss
])
cost
=
tf
.
add_n
([
policy_loss
,
xentropy_loss
*
entropy_beta
,
value_loss
])
self
.
cost
=
tf
.
truediv
(
self
.
cost
,
cost
=
tf
.
truediv
(
cost
,
tf
.
cast
(
tf
.
shape
(
futurereward
)[
0
],
tf
.
float32
),
name
=
'cost'
)
tf
.
cast
(
tf
.
shape
(
futurereward
)[
0
],
tf
.
float32
),
name
=
'cost'
)
summary
.
add_moving_summary
(
policy_loss
,
xentropy_loss
,
summary
.
add_moving_summary
(
policy_loss
,
xentropy_loss
,
value_loss
,
pred_reward
,
advantage
,
value_loss
,
pred_reward
,
advantage
,
self
.
cost
,
tf
.
reduce_mean
(
importance
,
name
=
'importance'
))
cost
,
tf
.
reduce_mean
(
importance
,
name
=
'importance'
))
return
cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.001
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.001
,
trainable
=
False
)
...
...
examples/CTC-TIMIT/train-timit.py
View file @
95bd4af5
...
@@ -53,7 +53,7 @@ class Model(ModelDesc):
...
@@ -53,7 +53,7 @@ class Model(ModelDesc):
loss
=
tf
.
nn
.
ctc_loss
(
label
,
logits
,
seqlen
,
time_major
=
False
)
loss
=
tf
.
nn
.
ctc_loss
(
label
,
logits
,
seqlen
,
time_major
=
False
)
self
.
cost
=
tf
.
reduce_mean
(
loss
,
name
=
'cost'
)
cost
=
tf
.
reduce_mean
(
loss
,
name
=
'cost'
)
logits
=
tf
.
transpose
(
logits
,
[
1
,
0
,
2
])
logits
=
tf
.
transpose
(
logits
,
[
1
,
0
,
2
])
...
@@ -68,7 +68,8 @@ class Model(ModelDesc):
...
@@ -68,7 +68,8 @@ class Model(ModelDesc):
err
=
tf
.
edit_distance
(
predictions
,
label
,
normalize
=
True
)
err
=
tf
.
edit_distance
(
predictions
,
label
,
normalize
=
True
)
err
.
set_shape
([
None
])
err
.
set_shape
([
None
])
err
=
tf
.
reduce_mean
(
err
,
name
=
'error'
)
err
=
tf
.
reduce_mean
(
err
,
name
=
'error'
)
summary
.
add_moving_summary
(
err
,
self
.
cost
)
summary
.
add_moving_summary
(
err
,
cost
)
return
cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
5e-3
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
5e-3
,
trainable
=
False
)
...
...
examples/Char-RNN/char-rnn.py
View file @
95bd4af5
...
@@ -104,9 +104,10 @@ class Model(ModelDesc):
...
@@ -104,9 +104,10 @@ class Model(ModelDesc):
xent_loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
xent_loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
tf
.
reshape
(
nextinput
,
[
-
1
]))
logits
=
logits
,
labels
=
tf
.
reshape
(
nextinput
,
[
-
1
]))
self
.
cost
=
tf
.
reduce_mean
(
xent_loss
,
name
=
'cost'
)
cost
=
tf
.
reduce_mean
(
xent_loss
,
name
=
'cost'
)
summary
.
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor histogram of all W
summary
.
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor histogram of all W
summary
.
add_moving_summary
(
self
.
cost
)
summary
.
add_moving_summary
(
cost
)
return
cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
2e-3
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
2e-3
,
trainable
=
False
)
...
...
examples/DeepQNetwork/DQNModel.py
View file @
95bd4af5
...
@@ -75,11 +75,12 @@ class Model(ModelDesc):
...
@@ -75,11 +75,12 @@ class Model(ModelDesc):
target
=
reward
+
(
1.0
-
tf
.
cast
(
isOver
,
tf
.
float32
))
*
self
.
gamma
*
tf
.
stop_gradient
(
best_v
)
target
=
reward
+
(
1.0
-
tf
.
cast
(
isOver
,
tf
.
float32
))
*
self
.
gamma
*
tf
.
stop_gradient
(
best_v
)
self
.
cost
=
tf
.
losses
.
huber_loss
(
cost
=
tf
.
losses
.
huber_loss
(
target
,
pred_action_value
,
reduction
=
tf
.
losses
.
Reduction
.
MEAN
)
target
,
pred_action_value
,
reduction
=
tf
.
losses
.
Reduction
.
MEAN
)
summary
.
add_param_summary
((
'conv.*/W'
,
[
'histogram'
,
'rms'
]),
summary
.
add_param_summary
((
'conv.*/W'
,
[
'histogram'
,
'rms'
]),
(
'fc.*/W'
,
[
'histogram'
,
'rms'
]))
# monitor all W
(
'fc.*/W'
,
[
'histogram'
,
'rms'
]))
# monitor all W
summary
.
add_moving_summary
(
self
.
cost
)
summary
.
add_moving_summary
(
cost
)
return
cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
self
.
learning_rate
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
self
.
learning_rate
,
trainable
=
False
)
...
...
examples/DisturbLabel/mnist-disturb.py
View file @
95bd4af5
...
@@ -50,8 +50,7 @@ class Model(mnist_example.Model):
...
@@ -50,8 +50,7 @@ class Model(mnist_example.Model):
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'cost'
)
return
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'cost'
)
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
95bd4af5
...
@@ -159,8 +159,9 @@ class Model(ModelDesc):
...
@@ -159,8 +159,9 @@ class Model(ModelDesc):
wd_cost
=
regularize_cost
(
'fc.*/W'
,
l2_regularizer
(
5e-6
),
name
=
'regularize_cost'
)
wd_cost
=
regularize_cost
(
'fc.*/W'
,
l2_regularizer
(
5e-6
),
name
=
'regularize_cost'
)
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
total_cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
add_moving_summary
(
cost
,
wd_cost
,
total_cost
)
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
1e-4
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
1e-4
,
trainable
=
False
)
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
95bd4af5
...
@@ -120,8 +120,9 @@ class Model(ModelDesc):
...
@@ -120,8 +120,9 @@ class Model(ModelDesc):
wd_cost
=
regularize_cost
(
'fc.*/W'
,
l2_regularizer
(
1e-7
))
wd_cost
=
regularize_cost
(
'fc.*/W'
,
l2_regularizer
(
1e-7
))
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
total_cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
add_moving_summary
(
cost
,
wd_cost
,
total_cost
)
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
...
examples/DynamicFilterNetwork/steering-filter.py
View file @
95bd4af5
...
@@ -143,8 +143,9 @@ class Model(ModelDesc):
...
@@ -143,8 +143,9 @@ class Model(ModelDesc):
tf
.
summary
.
image
(
'pred_gt_filters'
,
filters
,
max_outputs
=
20
)
tf
.
summary
.
image
(
'pred_gt_filters'
,
filters
,
max_outputs
=
20
)
tf
.
summary
.
image
(
'pred_gt_images'
,
images
,
max_outputs
=
20
)
tf
.
summary
.
image
(
'pred_gt_images'
,
images
,
max_outputs
=
20
)
self
.
cost
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
pred_image
,
gt_image
),
name
=
"cost"
)
cost
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
pred_image
,
gt_image
),
name
=
"cost"
)
summary
.
add_moving_summary
(
self
.
cost
)
summary
.
add_moving_summary
(
cost
)
return
cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
return
tf
.
train
.
AdamOptimizer
(
1e-3
)
return
tf
.
train
.
AdamOptimizer
(
1e-3
)
...
...
examples/FasterRCNN/train.py
View file @
95bd4af5
...
@@ -180,13 +180,14 @@ class Model(ModelDesc):
...
@@ -180,13 +180,14 @@ class Model(ModelDesc):
'(?:group1|group2|group3|rpn|fastrcnn|maskrcnn)/.*W'
,
'(?:group1|group2|group3|rpn|fastrcnn|maskrcnn)/.*W'
,
l2_regularizer
(
1e-4
),
name
=
'wd_cost'
)
l2_regularizer
(
1e-4
),
name
=
'wd_cost'
)
self
.
cost
=
tf
.
add_n
([
total_
cost
=
tf
.
add_n
([
rpn_label_loss
,
rpn_box_loss
,
rpn_label_loss
,
rpn_box_loss
,
fastrcnn_label_loss
,
fastrcnn_box_loss
,
fastrcnn_label_loss
,
fastrcnn_box_loss
,
mrcnn_loss
,
mrcnn_loss
,
wd_cost
],
'total_cost'
)
wd_cost
],
'total_cost'
)
add_moving_summary
(
self
.
cost
,
wd_cost
)
add_moving_summary
(
total_cost
,
wd_cost
)
return
total_cost
else
:
else
:
label_probs
=
tf
.
nn
.
softmax
(
fastrcnn_label_logits
,
name
=
'fastrcnn_all_probs'
)
# #proposal x #Class
label_probs
=
tf
.
nn
.
softmax
(
fastrcnn_label_logits
,
name
=
'fastrcnn_all_probs'
)
# #proposal x #Class
anchors
=
tf
.
tile
(
tf
.
expand_dims
(
proposal_boxes
,
1
),
[
1
,
config
.
NUM_CLASS
-
1
,
1
])
# #proposal x #Cat x 4
anchors
=
tf
.
tile
(
tf
.
expand_dims
(
proposal_boxes
,
1
),
[
1
,
config
.
NUM_CLASS
-
1
,
1
])
# #proposal x #Cat x 4
...
...
examples/HED/hed.py
View file @
95bd4af5
...
@@ -115,8 +115,9 @@ class Model(ModelDesc):
...
@@ -115,8 +115,9 @@ class Model(ModelDesc):
costs
.
append
(
wd_cost
)
costs
.
append
(
wd_cost
)
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
self
.
cost
=
tf
.
add_n
(
costs
,
name
=
'cost'
)
total_cost
=
tf
.
add_n
(
costs
,
name
=
'cost'
)
add_moving_summary
(
costs
+
[
wrong
,
self
.
cost
])
add_moving_summary
(
costs
+
[
wrong
,
total_cost
])
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
3e-5
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
3e-5
,
trainable
=
False
)
...
...
examples/ImageNetModels/imagenet_utils.py
View file @
95bd4af5
...
@@ -165,10 +165,11 @@ class ImageNetModel(ModelDesc):
...
@@ -165,10 +165,11 @@ class ImageNetModel(ModelDesc):
wd_loss
=
regularize_cost
(
'.*/W'
,
tf
.
contrib
.
layers
.
l2_regularizer
(
self
.
weight_decay
),
wd_loss
=
regularize_cost
(
'.*/W'
,
tf
.
contrib
.
layers
.
l2_regularizer
(
self
.
weight_decay
),
name
=
'l2_regularize_loss'
)
name
=
'l2_regularize_loss'
)
add_moving_summary
(
loss
,
wd_loss
)
add_moving_summary
(
loss
,
wd_loss
)
self
.
cost
=
tf
.
add_n
([
loss
,
wd_loss
],
name
=
'cost'
)
total_
cost
=
tf
.
add_n
([
loss
,
wd_loss
],
name
=
'cost'
)
else
:
else
:
self
.
cost
=
tf
.
identity
(
loss
,
name
=
'cost'
)
total_cost
=
tf
.
identity
(
loss
,
name
=
'cost'
)
add_moving_summary
(
self
.
cost
)
add_moving_summary
(
total_cost
)
return
total_cost
@
abstractmethod
@
abstractmethod
def
get_logits
(
self
,
image
):
def
get_logits
(
self
,
image
):
...
...
examples/ImageNetModels/inception-bn.py
View file @
95bd4af5
...
@@ -111,8 +111,9 @@ class Model(ModelDesc):
...
@@ -111,8 +111,9 @@ class Model(ModelDesc):
80000
,
0.7
,
True
)
80000
,
0.7
,
True
)
wd_cost
=
tf
.
multiply
(
wd_w
,
regularize_cost
(
'.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'l2_regularize_loss'
)
wd_cost
=
tf
.
multiply
(
wd_w
,
regularize_cost
(
'.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'l2_regularize_loss'
)
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
total_cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
add_moving_summary
(
wd_cost
,
self
.
cost
)
add_moving_summary
(
wd_cost
,
total_cost
)
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.045
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.045
,
trainable
=
False
)
...
...
examples/PennTreebank/PTB-LSTM.py
View file @
95bd4af5
...
@@ -96,11 +96,12 @@ class Model(ModelDesc):
...
@@ -96,11 +96,12 @@ class Model(ModelDesc):
logits
=
logits
,
labels
=
tf
.
reshape
(
nextinput
,
[
-
1
]))
logits
=
logits
,
labels
=
tf
.
reshape
(
nextinput
,
[
-
1
]))
with
tf
.
control_dependencies
(
update_state_ops
):
with
tf
.
control_dependencies
(
update_state_ops
):
self
.
cost
=
tf
.
truediv
(
tf
.
reduce_sum
(
xent_loss
),
cost
=
tf
.
truediv
(
tf
.
reduce_sum
(
xent_loss
),
tf
.
cast
(
BATCH
,
tf
.
float32
),
name
=
'cost'
)
# log-perplexity
tf
.
cast
(
BATCH
,
tf
.
float32
),
name
=
'cost'
)
# log-perplexity
perpl
=
tf
.
exp
(
self
.
cost
/
SEQ_LEN
,
name
=
'perplexity'
)
perpl
=
tf
.
exp
(
cost
/
SEQ_LEN
,
name
=
'perplexity'
)
summary
.
add_moving_summary
(
perpl
,
self
.
cost
)
summary
.
add_moving_summary
(
perpl
,
cost
)
return
cost
def
reset_lstm_state
(
self
):
def
reset_lstm_state
(
self
):
s
=
self
.
state
s
=
self
.
state
...
...
examples/ResNet/cifar10-preact18-mixup.py
View file @
95bd4af5
...
@@ -77,7 +77,7 @@ class ResNet_Cifar(ModelDesc):
...
@@ -77,7 +77,7 @@ class ResNet_Cifar(ModelDesc):
# weight decay on all W matrixes. including convolutional layers
# weight decay on all W matrixes. including convolutional layers
wd_cost
=
tf
.
multiply
(
WEIGHT_DECAY
,
regularize_cost
(
'.*'
,
tf
.
nn
.
l2_loss
),
name
=
'wd_cost'
)
wd_cost
=
tf
.
multiply
(
WEIGHT_DECAY
,
regularize_cost
(
'.*'
,
tf
.
nn
.
l2_loss
),
name
=
'wd_cost'
)
self
.
cost
=
tf
.
add_n
([
ce_cost
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
ce_cost
,
wd_cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.1
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.1
,
trainable
=
False
)
...
...
examples/ResNet/cifar10-resnet.py
View file @
95bd4af5
...
@@ -110,7 +110,7 @@ class Model(ModelDesc):
...
@@ -110,7 +110,7 @@ class Model(ModelDesc):
add_moving_summary
(
cost
,
wd_cost
)
add_moving_summary
(
cost
,
wd_cost
)
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.01
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.01
,
trainable
=
False
)
...
...
examples/Saliency/CAM-resnet.py
View file @
95bd4af5
...
@@ -64,7 +64,7 @@ class Model(ModelDesc):
...
@@ -64,7 +64,7 @@ class Model(ModelDesc):
loss
=
compute_loss_and_error
(
logits
,
label
)
loss
=
compute_loss_and_error
(
logits
,
label
)
wd_cost
=
regularize_cost
(
'.*/W'
,
l2_regularizer
(
1e-4
),
name
=
'l2_regularize_loss'
)
wd_cost
=
regularize_cost
(
'.*/W'
,
l2_regularizer
(
1e-4
),
name
=
'l2_regularize_loss'
)
add_moving_summary
(
loss
,
wd_cost
)
add_moving_summary
(
loss
,
wd_cost
)
self
.
cost
=
tf
.
add_n
([
loss
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
loss
,
wd_cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.1
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.1
,
trainable
=
False
)
...
...
examples/Saliency/saliency-maps.py
View file @
95bd4af5
...
@@ -53,7 +53,7 @@ def saliency_map(output, input, name="saliency_map"):
...
@@ -53,7 +53,7 @@ def saliency_map(output, input, name="saliency_map"):
return
tf
.
identity
(
saliency_op
,
name
=
name
)
return
tf
.
identity
(
saliency_op
,
name
=
name
)
class
Model
(
tp
.
ModelDesc
):
class
Model
(
tp
.
ModelDesc
Base
):
def
inputs
(
self
):
def
inputs
(
self
):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
IMAGE_SIZE
,
IMAGE_SIZE
,
3
),
'image'
)]
return
[
tf
.
placeholder
(
tf
.
float32
,
(
IMAGE_SIZE
,
IMAGE_SIZE
,
3
),
'image'
)]
...
...
examples/SimilarityLearning/mnist-embeddings.py
View file @
95bd4af5
...
@@ -253,10 +253,11 @@ class SiameseModel(EmbeddingModel):
...
@@ -253,10 +253,11 @@ class SiameseModel(EmbeddingModel):
# compute the actual loss
# compute the actual loss
cost
,
pos_dist
,
neg_dist
=
contrastive_loss
(
x
,
y
,
label
,
5.
,
extra
=
True
,
scope
=
"loss"
)
cost
,
pos_dist
,
neg_dist
=
contrastive_loss
(
x
,
y
,
label
,
5.
,
extra
=
True
,
scope
=
"loss"
)
self
.
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
# track these values during training
# track these values during training
add_moving_summary
(
pos_dist
,
neg_dist
,
self
.
cost
)
add_moving_summary
(
pos_dist
,
neg_dist
,
cost
)
return
cost
class
CosineModel
(
SiameseModel
):
class
CosineModel
(
SiameseModel
):
...
@@ -268,8 +269,9 @@ class CosineModel(SiameseModel):
...
@@ -268,8 +269,9 @@ class CosineModel(SiameseModel):
tf
.
identity
(
self
.
embed
(
inputs
[
0
]),
name
=
"emb"
)
tf
.
identity
(
self
.
embed
(
inputs
[
0
]),
name
=
"emb"
)
cost
=
siamese_cosine_loss
(
x
,
y
,
label
,
scope
=
"loss"
)
cost
=
siamese_cosine_loss
(
x
,
y
,
label
,
scope
=
"loss"
)
self
.
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
add_moving_summary
(
self
.
cost
)
add_moving_summary
(
cost
)
return
cost
class
TripletModel
(
EmbeddingModel
):
class
TripletModel
(
EmbeddingModel
):
...
@@ -296,8 +298,9 @@ class TripletModel(EmbeddingModel):
...
@@ -296,8 +298,9 @@ class TripletModel(EmbeddingModel):
cost
,
pos_dist
,
neg_dist
=
self
.
loss
(
a
,
p
,
n
)
cost
,
pos_dist
,
neg_dist
=
self
.
loss
(
a
,
p
,
n
)
self
.
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
cost
=
tf
.
identity
(
cost
,
name
=
"cost"
)
add_moving_summary
(
pos_dist
,
neg_dist
,
self
.
cost
)
add_moving_summary
(
pos_dist
,
neg_dist
,
cost
)
return
cost
class
SoftTripletModel
(
TripletModel
):
class
SoftTripletModel
(
TripletModel
):
...
@@ -333,10 +336,11 @@ class CenterModel(EmbeddingModel):
...
@@ -333,10 +336,11 @@ class CenterModel(EmbeddingModel):
cls_cost
=
tf
.
reduce_mean
(
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
),
cls_cost
=
tf
.
reduce_mean
(
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
),
name
=
'classification_costs'
)
name
=
'classification_costs'
)
self
.
cost
=
tf
.
add
(
emb_cost
,
100
*
cls_cost
,
name
=
"cost"
)
total_
cost
=
tf
.
add
(
emb_cost
,
100
*
cls_cost
,
name
=
"cost"
)
# track these values during training
# track these values during training
add_moving_summary
(
self
.
cost
,
cls_cost
,
emb_cost
)
add_moving_summary
(
total_cost
,
cls_cost
,
emb_cost
)
return
total_cost
def
get_config
(
model
,
algorithm_name
):
def
get_config
(
model
,
algorithm_name
):
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
95bd4af5
...
@@ -85,7 +85,7 @@ class Model(ModelDesc):
...
@@ -85,7 +85,7 @@ class Model(ModelDesc):
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
)
summary
.
add_moving_summary
(
cost
,
wd_cost
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'cost'
)
return
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
5e-4
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
5e-4
,
trainable
=
False
)
...
...
examples/basics/cifar-convnet.py
View file @
95bd4af5
...
@@ -72,7 +72,7 @@ class Model(ModelDesc):
...
@@ -72,7 +72,7 @@ class Model(ModelDesc):
add_moving_summary
(
cost
,
wd_cost
)
add_moving_summary
(
cost
,
wd_cost
)
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
add_param_summary
((
'.*/W'
,
[
'histogram'
]))
# monitor W
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
1e-2
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
1e-2
,
trainable
=
False
)
...
...
examples/basics/mnist-convnet.py
View file @
95bd4af5
...
@@ -27,12 +27,9 @@ class Model(ModelDesc):
...
@@ -27,12 +27,9 @@ class Model(ModelDesc):
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
return
[
tf
.
placeholder
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
def
build_graph
(
self
,
image
,
label
):
"""This function should build the model which takes the input variables
"""This function should build the model which takes the input variables
and define self.cost at the end"""
and return cost at the end"""
# inputs contains a list of input variables defined above
image
,
label
=
inputs
# In tensorflow, inputs to convolution function are assumed to be
# In tensorflow, inputs to convolution function are assumed to be
# NHWC. Add a single channel here.
# NHWC. Add a single channel here.
...
@@ -74,11 +71,12 @@ class Model(ModelDesc):
...
@@ -74,11 +71,12 @@ class Model(ModelDesc):
wd_cost
=
tf
.
multiply
(
1e-5
,
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
total_
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
total_
cost
)
# monitor histogram of all weight (of conv and fc layers) in tensorboard
# monitor histogram of all weight (of conv and fc layers) in tensorboard
summary
.
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
summary
.
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
...
examples/basics/mnist-tflayers.py
View file @
95bd4af5
...
@@ -32,9 +32,6 @@ class Model(ModelDesc):
...
@@ -32,9 +32,6 @@ class Model(ModelDesc):
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
tf
.
placeholder
(
tf
.
int32
,
(
None
,),
'label'
)]
def
_build_graph
(
self
,
inputs
):
def
_build_graph
(
self
,
inputs
):
"""This function should build the model which takes the input variables
and define self.cost at the end"""
# inputs contains a list of input variables defined above
# inputs contains a list of input variables defined above
image
,
label
=
inputs
image
,
label
=
inputs
...
@@ -77,11 +74,12 @@ class Model(ModelDesc):
...
@@ -77,11 +74,12 @@ class Model(ModelDesc):
wd_cost
=
tf
.
multiply
(
1e-5
,
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/kernel'
,
tf
.
nn
.
l2_loss
),
regularize_cost
(
'fc.*/kernel'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
total_
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
total_
cost
)
# monitor histogram of all weight (of conv and fc layers) in tensorboard
# monitor histogram of all weight (of conv and fc layers) in tensorboard
summary
.
add_param_summary
((
'.*/kernel'
,
[
'histogram'
,
'rms'
]))
summary
.
add_param_summary
((
'.*/kernel'
,
[
'histogram'
,
'rms'
]))
return
total_cost
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
...
examples/basics/mnist-visualizations.py
View file @
95bd4af5
...
@@ -108,10 +108,7 @@ class Model(ModelDesc):
...
@@ -108,10 +108,7 @@ class Model(ModelDesc):
wd_cost
=
tf
.
multiply
(
1e-5
,
wd_cost
=
tf
.
multiply
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
name
=
'regularize_loss'
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
return
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
,
accuracy
)
summary
.
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
...
examples/basics/svhn-digit-convnet.py
View file @
95bd4af5
...
@@ -56,7 +56,7 @@ class Model(ModelDesc):
...
@@ -56,7 +56,7 @@ class Model(ModelDesc):
add_moving_summary
(
cost
,
wd_cost
)
add_moving_summary
(
cost
,
wd_cost
)
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
# monitor W
add_param_summary
((
'.*/W'
,
[
'histogram'
,
'rms'
]))
# monitor W
self
.
cost
=
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
return
tf
.
add_n
([
cost
,
wd_cost
],
name
=
'cost'
)
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
...
tensorpack/graph_builder/model_desc.py
View file @
95bd4af5
...
@@ -177,7 +177,7 @@ class ModelDesc(ModelDescBase):
...
@@ -177,7 +177,7 @@ class ModelDesc(ModelDescBase):
A ModelDesc with **single cost** and **single optimizer**.
A ModelDesc with **single cost** and **single optimizer**.
It has the following constraints in addition to :class:`ModelDescBase`:
It has the following constraints in addition to :class:`ModelDescBase`:
1. :meth:`build_graph(...)` method should return a cost.
1. :meth:`build_graph(...)` method should return a cost
when called under a training context
.
The cost will be the final cost to be optimized by the optimizer.
The cost will be the final cost to be optimized by the optimizer.
Therefore it should include necessary regularization.
Therefore it should include necessary regularization.
2. Subclass is expected to implement :meth:`optimizer()` method.
2. Subclass is expected to implement :meth:`optimizer()` method.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment