Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
d6723566
Commit
d6723566
authored
Nov 19, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update readme
parent
8843f7ff
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
11 additions
and
8 deletions
+11
-8
README.md
README.md
+1
-1
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+1
-1
examples/GAN/DCGAN-CelebA.py
examples/GAN/DCGAN-CelebA.py
+4
-4
examples/GAN/README.md
examples/GAN/README.md
+3
-1
examples/README.md
examples/README.md
+2
-1
No files found.
README.md
View file @
d6723566
...
@@ -11,7 +11,7 @@ You can actually train them and reproduce the performance... not just to see how
...
@@ -11,7 +11,7 @@ You can actually train them and reproduce the performance... not just to see how
+
[
InceptionV3 on ImageNet
](
examples/Inception/inceptionv3.py
)
+
[
InceptionV3 on ImageNet
](
examples/Inception/inceptionv3.py
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection
](
examples/HED
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection
](
examples/HED
)
+
[
Spatial Transformer Networks on MNIST addition
](
examples/SpatialTransformer
)
+
[
Spatial Transformer Networks on MNIST addition
](
examples/SpatialTransformer
)
+
[
Generative Adversarial Networks
](
examples/GAN
)
+
[
Deep Convolutional
Generative Adversarial Networks
](
examples/GAN
)
+
[
DQN variants on Atari games
](
examples/Atari2600
)
+
[
DQN variants on Atari games
](
examples/Atari2600
)
+
[
Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym
](
examples/OpenAIGym
)
+
[
Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym
](
examples/OpenAIGym
)
+
[
char-rnn language model
](
examples/char-rnn
)
+
[
char-rnn language model
](
examples/char-rnn
)
...
...
examples/DoReFa-Net/README.md
View file @
d6723566
...
@@ -3,7 +3,7 @@ Code and model for the paper:
...
@@ -3,7 +3,7 @@ Code and model for the paper:
[
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
](
http://arxiv.org/abs/1606.06160
)
, by Zhou et al.
[
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
](
http://arxiv.org/abs/1606.06160
)
, by Zhou et al.
We hosted a demo at CVPR16 on behalf of Megvii, Inc, running a real-time 1/4-VGG size DoReFa-Net on ARM and half-VGG size DoReFa-Net on FPGA.
We hosted a demo at CVPR16 on behalf of Megvii, Inc, running a real-time 1/4-VGG size DoReFa-Net on ARM and half-VGG size DoReFa-Net on FPGA.
We're not planning to release those runtime bit-op libraries for now. In th
ese examples
, bit operations are run in float32.
We're not planning to release those runtime bit-op libraries for now. In th
is repo
, bit operations are run in float32.
Pretrained model for 1-2-6-AlexNet is available at
Pretrained model for 1-2-6-AlexNet is available at
[
google drive
](
https://drive.google.com/a/%20megvii.com/folderview?id=0B308TeQzmFDLa0xOeVQwcXg1ZjQ
)
.
[
google drive
](
https://drive.google.com/a/%20megvii.com/folderview?id=0B308TeQzmFDLa0xOeVQwcXg1ZjQ
)
.
...
...
examples/GAN/DCGAN-CelebA.py
View file @
d6723566
...
@@ -126,7 +126,7 @@ def sample(model_path):
...
@@ -126,7 +126,7 @@ def sample(model_path):
o
=
o
[:,:,:,::
-
1
]
o
=
o
[:,:,:,::
-
1
]
viz
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
,
viz
=
True
))
viz
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
,
viz
=
True
))
def
interp
(
model_path
):
def
vec
(
model_path
):
func
=
OfflinePredictor
(
PredictConfig
(
func
=
OfflinePredictor
(
PredictConfig
(
session_init
=
get_model_loader
(
model_path
),
session_init
=
get_model_loader
(
model_path
),
model
=
Model
(),
model
=
Model
(),
...
@@ -149,7 +149,7 @@ if __name__ == '__main__':
...
@@ -149,7 +149,7 @@ if __name__ == '__main__':
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
parser
.
add_argument
(
'--sample'
,
action
=
'store_true'
,
help
=
'run sampling'
)
parser
.
add_argument
(
'--sample'
,
action
=
'store_true'
,
help
=
'run sampling'
)
parser
.
add_argument
(
'--
interp'
,
action
=
'store_true'
,
help
=
'run interpolation
'
)
parser
.
add_argument
(
'--
vec'
,
action
=
'store_true'
,
help
=
'run vec arithmetic demo
'
)
parser
.
add_argument
(
'--data'
,
help
=
'`image_align_celeba` directory of the celebA dataset'
)
parser
.
add_argument
(
'--data'
,
help
=
'`image_align_celeba` directory of the celebA dataset'
)
global
args
global
args
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
...
@@ -157,8 +157,8 @@ if __name__ == '__main__':
...
@@ -157,8 +157,8 @@ if __name__ == '__main__':
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
if
args
.
sample
:
if
args
.
sample
:
sample
(
args
.
load
)
sample
(
args
.
load
)
elif
args
.
interp
:
elif
args
.
vec
:
interp
(
args
.
load
)
vec
(
args
.
load
)
else
:
else
:
assert
args
.
data
assert
args
.
data
config
=
get_config
()
config
=
get_config
()
...
...
examples/GAN/README.md
View file @
d6723566
...
@@ -2,7 +2,9 @@
...
@@ -2,7 +2,9 @@
Reproduce DCGAN following the setup in
[
dcgan.torch
](
https://github.com/soumith/dcgan.torch
)
.
Reproduce DCGAN following the setup in
[
dcgan.torch
](
https://github.com/soumith/dcgan.torch
)
.
Samples from CelebA dataset:
Play with the
[
pretrained model
](
https://drive.google.com/drive/folders/0B9IPQTvr2BBkLUF2M0RXU1NYSkE?usp=sharing
)
on CelebA face dataset.
Generated samples:


...
...
examples/README.md
View file @
d6723566
...
@@ -11,6 +11,7 @@ Training examples with __reproducible__ and meaningful performance.
...
@@ -11,6 +11,7 @@ Training examples with __reproducible__ and meaningful performance.
+
[
ResNet for ImageNet/Cifar10/SVHN
](
ResNet
)
+
[
ResNet for ImageNet/Cifar10/SVHN
](
ResNet
)
+
[
Holistically-Nested Edge Detection
](
HED
)
+
[
Holistically-Nested Edge Detection
](
HED
)
+
[
Spatial Transformer Networks on MNIST addition
](
SpatialTransformer
)
+
[
Spatial Transformer Networks on MNIST addition
](
SpatialTransformer
)
+
[
DisturbLabel, because I don't believe the paper
](
DisturbLabel
)
+
[
Generative Adversarial Networks
](
GAN
)
+
[
DisturbLabel -- I don't believe the paper
](
DisturbLabel
)
+
Reinforcement learning (DQN, A3C) on
[
Atari games
](
Atari2600
)
and
[
demos on OpenAI Gym
](
OpenAIGym
)
.
+
Reinforcement learning (DQN, A3C) on
[
Atari games
](
Atari2600
)
and
[
demos on OpenAI Gym
](
OpenAIGym
)
.
+
[
char-rnn for fun
](
char-rnn
)
+
[
char-rnn for fun
](
char-rnn
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment