Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
d1cc5a4a
Commit
d1cc5a4a
authored
Sep 26, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
tower_func option in InferenceRunner
parent
8f8fe80d
Changes
15
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
75 additions
and
39 deletions
+75
-39
.lgtm.yml
.lgtm.yml
+7
-0
docs/tutorial/symbolic.md
docs/tutorial/symbolic.md
+17
-3
examples/FasterRCNN/train.py
examples/FasterRCNN/train.py
+1
-0
examples/OpticalFlow/flownet_models.py
examples/OpticalFlow/flownet_models.py
+0
-3
tensorpack/callbacks/inference_runner.py
tensorpack/callbacks/inference_runner.py
+26
-12
tensorpack/contrib/keras.py
tensorpack/contrib/keras.py
+1
-1
tensorpack/dataflow/dataset/cifar.py
tensorpack/dataflow/dataset/cifar.py
+1
-1
tensorpack/dataflow/serialize.py
tensorpack/dataflow/serialize.py
+3
-2
tensorpack/input_source/input_source_base.py
tensorpack/input_source/input_source_base.py
+8
-7
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+1
-3
tensorpack/models/image_sample.py
tensorpack/models/image_sample.py
+1
-2
tensorpack/models/regularize.py
tensorpack/models/regularize.py
+2
-0
tensorpack/train/interface.py
tensorpack/train/interface.py
+5
-3
tensorpack/utils/develop.py
tensorpack/utils/develop.py
+1
-1
tests/run-tests.sh
tests/run-tests.sh
+1
-1
No files found.
.lgtm.yml
View file @
d1cc5a4a
queries
:
-
exclude
:
py/unguarded-next-in-generator
-
exclude
:
py/explicit-call-to-delete
-
exclude
:
py/polluting-import
-
exclude
:
py/import-and-import-from
-
exclude
:
py/similar-function
-
exclude
:
py/unused-local-variable
extraction
:
extraction
:
python
:
python
:
prepare
:
prepare
:
...
...
docs/tutorial/symbolic.md
View file @
d1cc5a4a
...
@@ -81,14 +81,28 @@ with TowerContext('some_name_or_empty_string', is_training=False):
...
@@ -81,14 +81,28 @@ with TowerContext('some_name_or_empty_string', is_training=False):
# build the graph again
# build the graph again
```
```
### Use Other Symbolic Libraries
within Tensorpack
### Use Other Symbolic Libraries
When defining the model you can construct the graph using whatever library you feel comfortable with.
Tensorpack &
`tf.layers`
only provide a subset of most common models.
However you can construct the graph using whatever library you feel comfortable with.
Usually,
slim/tflearn/tensorlayer are just symbolic function wrappers, calling them is nothing different
Functions in
slim/tflearn/tensorlayer are just symbolic function wrappers, calling them is nothing different
from calling
`tf.add`
. You may need to be careful how regularizations/BN updates are supposed
from calling
`tf.add`
. You may need to be careful how regularizations/BN updates are supposed
to be handled in those libraries, though.
to be handled in those libraries, though.
It is a bit different to use sonnet/Keras.
It is a bit different to use sonnet/Keras.
sonnet/Keras manages the variable scope by their own model classes, and calling their symbolic functions
sonnet/Keras manages the variable scope by their own model classes, and calling their symbolic functions
always creates new variable scope. See the
[
Keras example
](
../examples/keras
)
for how to use it within tensorpack.
always creates new variable scope. See the
[
Keras example
](
../examples/keras
)
for how to use it within tensorpack.
```
eval_rst
.. note:: **It's best to not trust others' layers!**.
For non-standard layers that's not included in TensorFlow or Tensorpack, it's best to implement them yourself.
Non-standard layers often do not have a mathematical definition that people
all agree on, and different people can implement it differently.
Also, deep learning models on github often have bugs, especially when there is
no reproduced experiments with the code.
For your own good, it's best to implement the layers yourself.
This is also why Tensorpack does not contain non-standard layers.
```
examples/FasterRCNN/train.py
View file @
d1cc5a4a
...
@@ -102,6 +102,7 @@ class ResNetC4Model(DetectionModel):
...
@@ -102,6 +102,7 @@ class ResNetC4Model(DetectionModel):
return
ret
return
ret
def
build_graph
(
self
,
*
inputs
):
def
build_graph
(
self
,
*
inputs
):
# TODO need to make tensorpack handles dict better
inputs
=
dict
(
zip
(
self
.
input_names
,
inputs
))
inputs
=
dict
(
zip
(
self
.
input_names
,
inputs
))
is_training
=
get_current_tower_context
()
.
is_training
is_training
=
get_current_tower_context
()
.
is_training
image
=
self
.
preprocess
(
inputs
[
'image'
])
# 1CHW
image
=
self
.
preprocess
(
inputs
[
'image'
])
# 1CHW
...
...
examples/OpticalFlow/flownet_models.py
View file @
d1cc5a4a
...
@@ -85,9 +85,7 @@ def resample(img, flow):
...
@@ -85,9 +85,7 @@ def resample(img, flow):
xf
=
xf
+
dx
xf
=
xf
+
dx
yf
=
yf
+
dy
yf
=
yf
+
dy
alpha
=
tf
.
expand_dims
(
xf
-
tf
.
floor
(
xf
),
axis
=
0
)
alpha
=
tf
.
expand_dims
(
xf
-
tf
.
floor
(
xf
),
axis
=-
1
)
alpha
=
tf
.
expand_dims
(
xf
-
tf
.
floor
(
xf
),
axis
=-
1
)
beta
=
tf
.
expand_dims
(
yf
-
tf
.
floor
(
yf
),
axis
=
0
)
beta
=
tf
.
expand_dims
(
yf
-
tf
.
floor
(
yf
),
axis
=-
1
)
beta
=
tf
.
expand_dims
(
yf
-
tf
.
floor
(
yf
),
axis
=-
1
)
xL
=
tf
.
clip_by_value
(
tf
.
cast
(
tf
.
floor
(
xf
),
dtype
=
tf
.
int32
),
0
,
w
-
1
)
xL
=
tf
.
clip_by_value
(
tf
.
cast
(
tf
.
floor
(
xf
),
dtype
=
tf
.
int32
),
0
,
w
-
1
)
...
@@ -406,7 +404,6 @@ class FlowNet2C(FlowNetBase):
...
@@ -406,7 +404,6 @@ class FlowNet2C(FlowNetBase):
corr
=
tf
.
nn
.
leaky_relu
(
corr
,
0.1
)
corr
=
tf
.
nn
.
leaky_relu
(
corr
,
0.1
)
conv_redir
=
tf
.
layers
.
conv2d
(
conv3a
,
32
,
kernel_size
=
1
,
strides
=
1
,
name
=
'conv_redir'
)
conv_redir
=
tf
.
layers
.
conv2d
(
conv3a
,
32
,
kernel_size
=
1
,
strides
=
1
,
name
=
'conv_redir'
)
x
=
tf
.
concat
([
conv_redir
,
corr
],
axis
=
1
,
name
=
'concat_redir'
)
in_conv3_1
=
tf
.
concat
([
conv_redir
,
corr
],
axis
=
1
,
name
=
'in_conv3_1'
)
in_conv3_1
=
tf
.
concat
([
conv_redir
,
corr
],
axis
=
1
,
name
=
'in_conv3_1'
)
conv3_1
=
tf
.
layers
.
conv2d
(
pad
(
in_conv3_1
,
1
),
256
,
name
=
'conv3_1'
,
strides
=
1
)
conv3_1
=
tf
.
layers
.
conv2d
(
pad
(
in_conv3_1
,
1
),
256
,
name
=
'conv3_1'
,
strides
=
1
)
...
...
tensorpack/callbacks/inference_runner.py
View file @
d1cc5a4a
...
@@ -111,7 +111,7 @@ class InferenceRunner(InferenceRunnerBase):
...
@@ -111,7 +111,7 @@ class InferenceRunner(InferenceRunnerBase):
A callback that runs a list of :class:`Inferencer` on some :class:`InputSource`.
A callback that runs a list of :class:`Inferencer` on some :class:`InputSource`.
"""
"""
def
__init__
(
self
,
input
,
infs
,
tower_name
=
'InferenceTower'
,
device
=
0
):
def
__init__
(
self
,
input
,
infs
,
tower_name
=
'InferenceTower'
,
tower_func
=
None
,
device
=
0
):
"""
"""
Args:
Args:
input (InputSource or DataFlow): The :class:`InputSource` to run
input (InputSource or DataFlow): The :class:`InputSource` to run
...
@@ -119,6 +119,10 @@ class InferenceRunner(InferenceRunnerBase):
...
@@ -119,6 +119,10 @@ class InferenceRunner(InferenceRunnerBase):
infs (list): a list of :class:`Inferencer` instances.
infs (list): a list of :class:`Inferencer` instances.
tower_name (str): the name scope of the tower to build. Need to set a
tower_name (str): the name scope of the tower to build. Need to set a
different one if multiple InferenceRunner are used.
different one if multiple InferenceRunner are used.
tower_func (tfutils.TowerFuncWrapper or None): the tower function to be used to build the graph.
By defaults to call `trainer.tower_func` under a `training=False` TowerContext,
but you can change it to a different tower function
if you need to inference with several different graphs.
device (int): the device to use
device (int): the device to use
"""
"""
if
isinstance
(
input
,
DataFlow
):
if
isinstance
(
input
,
DataFlow
):
...
@@ -128,6 +132,7 @@ class InferenceRunner(InferenceRunnerBase):
...
@@ -128,6 +132,7 @@ class InferenceRunner(InferenceRunnerBase):
self
.
_tower_name
=
tower_name
self
.
_tower_name
=
tower_name
self
.
_device_id
=
device
self
.
_device_id
=
device
self
.
_device
=
_device_from_int
(
device
)
self
.
_device
=
_device_from_int
(
device
)
self
.
_tower_func
=
tower_func
super
(
InferenceRunner
,
self
)
.
__init__
(
input
,
infs
)
super
(
InferenceRunner
,
self
)
.
__init__
(
input
,
infs
)
def
_build_hook
(
self
,
inf
):
def
_build_hook
(
self
,
inf
):
...
@@ -136,9 +141,10 @@ class InferenceRunner(InferenceRunnerBase):
...
@@ -136,9 +141,10 @@ class InferenceRunner(InferenceRunnerBase):
return
InferencerToHook
(
inf
,
fetches
)
return
InferencerToHook
(
inf
,
fetches
)
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
assert
self
.
trainer
.
tower_func
is
not
None
,
"You must set tower_func of the trainer to use InferenceRunner!"
if
self
.
_tower_func
is
None
:
tower_func
=
self
.
trainer
.
tower_func
assert
self
.
trainer
.
tower_func
is
not
None
,
"You must set tower_func of the trainer to use InferenceRunner!"
input_callbacks
=
self
.
_input_source
.
setup
(
tower_func
.
inputs_desc
)
self
.
_tower_func
=
self
.
trainer
.
tower_func
input_callbacks
=
self
.
_input_source
.
setup
(
self
.
_tower_func
.
inputs_desc
)
vs_name
=
self
.
trainer
.
_vs_name_for_predictor
(
self
.
_device_id
)
vs_name
=
self
.
trainer
.
_vs_name_for_predictor
(
self
.
_device_id
)
logger
.
info
(
"[InferenceRunner] Building tower '{}' on device {} {}..."
.
format
(
logger
.
info
(
"[InferenceRunner] Building tower '{}' on device {} {}..."
.
format
(
...
@@ -147,8 +153,8 @@ class InferenceRunner(InferenceRunnerBase):
...
@@ -147,8 +153,8 @@ class InferenceRunner(InferenceRunnerBase):
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
),
\
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
),
\
tf
.
device
(
self
.
_device
),
\
tf
.
device
(
self
.
_device
),
\
PredictTowerContext
(
self
.
_tower_name
,
vs_name
=
vs_name
):
PredictTowerContext
(
self
.
_tower_name
,
vs_name
=
vs_name
):
tower_func
(
*
self
.
_input_source
.
get_input_tensors
())
self
.
_
tower_func
(
*
self
.
_input_source
.
get_input_tensors
())
self
.
_tower_handle
=
tower_func
.
towers
[
-
1
]
self
.
_tower_handle
=
self
.
_
tower_func
.
towers
[
-
1
]
for
h
in
[
self
.
_build_hook
(
inf
)
for
inf
in
self
.
infs
]:
for
h
in
[
self
.
_build_hook
(
inf
)
for
inf
in
self
.
infs
]:
self
.
register_hook
(
h
)
self
.
register_hook
(
h
)
...
@@ -186,11 +192,17 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
...
@@ -186,11 +192,17 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
It will run the remainder (when the total size of input is not a multiple of #GPU)
It will run the remainder (when the total size of input is not a multiple of #GPU)
sequentially.
sequentially.
"""
"""
def
__init__
(
self
,
input
,
infs
,
gpus
,
tower_name
=
'InferenceTower'
):
def
__init__
(
self
,
input
,
infs
,
gpus
,
tower_name
=
'InferenceTower'
,
tower_func
=
None
):
"""
"""
Args:
Args:
input (DataFlow or QueueInput)
input (DataFlow or QueueInput)
gpus (int or list[int]): #gpus, or list of GPU id
gpus (int or list[int]): #gpus, or list of GPU id
tower_name (str): the name scope of the tower to build. Need to set a
different one if multiple InferenceRunner are used.
tower_func (tfutils.TowerFuncWrapper or None): the tower function to be used to build the graph.
By defaults to call `trainer.tower_func` under a `training=False` TowerContext,
but you can change it to a different tower function
if you need to inference with several different graphs.
"""
"""
if
isinstance
(
gpus
,
int
):
if
isinstance
(
gpus
,
int
):
gpus
=
list
(
range
(
gpus
))
gpus
=
list
(
range
(
gpus
))
...
@@ -205,13 +217,15 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
...
@@ -205,13 +217,15 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
self
.
_hooks
=
[]
self
.
_hooks
=
[]
self
.
_hooks_parallel
=
[]
self
.
_hooks_parallel
=
[]
self
.
_tower_func
=
tower_func
def
_setup_graph
(
self
):
def
_setup_graph
(
self
):
self
.
_handles
=
[]
self
.
_handles
=
[]
if
self
.
_tower_func
is
None
:
assert
self
.
trainer
.
tower_func
is
not
None
,
"You must set tower_func of the trainer to use InferenceRunner!"
self
.
_tower_func
=
self
.
trainer
.
tower_func
assert
self
.
trainer
.
tower_func
is
not
None
,
"You must set tower_func of the trainer to use InferenceRunner!"
input_callbacks
=
self
.
_input_source
.
setup
(
self
.
_tower_func
.
inputs_desc
)
tower_func
=
self
.
trainer
.
tower_func
input_callbacks
=
self
.
_input_source
.
setup
(
tower_func
.
inputs_desc
)
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
for
idx
,
dev
in
enumerate
(
self
.
_devices
):
for
idx
,
dev
in
enumerate
(
self
.
_devices
):
vs_name
=
self
.
trainer
.
_vs_name_for_predictor
(
idx
)
vs_name
=
self
.
trainer
.
_vs_name_for_predictor
(
idx
)
...
@@ -221,8 +235,8 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
...
@@ -221,8 +235,8 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
self
.
_tower_names
[
idx
],
dev
,
self
.
_tower_names
[
idx
],
dev
,
"with variable scope '{}'"
.
format
(
vs_name
)
if
vs_name
else
''
))
"with variable scope '{}'"
.
format
(
vs_name
)
if
vs_name
else
''
))
# TODO log for tower creation, here or in tower.py?
# TODO log for tower creation, here or in tower.py?
tower_func
(
*
self
.
_input_source
.
get_input_tensors
())
self
.
_
tower_func
(
*
self
.
_input_source
.
get_input_tensors
())
self
.
_handles
.
append
(
tower_func
.
towers
[
-
1
])
self
.
_handles
.
append
(
self
.
_
tower_func
.
towers
[
-
1
])
# setup callbacks and hooks
# setup callbacks and hooks
self
.
_input_callbacks
=
Callbacks
(
input_callbacks
)
self
.
_input_callbacks
=
Callbacks
(
input_callbacks
)
...
...
tensorpack/contrib/keras.py
View file @
d1cc5a4a
...
@@ -209,7 +209,7 @@ class KerasModel(object):
...
@@ -209,7 +209,7 @@ class KerasModel(object):
input
,
trainer
=
None
):
input
,
trainer
=
None
):
"""
"""
Args:
Args:
get_model (input1, input2, ... -> keras.
model.
Model):
get_model (input1, input2, ... -> keras.Model):
Takes tensors and returns a Keras model. Will be part of the tower function.
Takes tensors and returns a Keras model. Will be part of the tower function.
inputs_desc ([InputDesc]):
inputs_desc ([InputDesc]):
targets_desc ([InputDesc]):
targets_desc ([InputDesc]):
...
...
tensorpack/dataflow/dataset/cifar.py
View file @
d1cc5a4a
...
@@ -52,7 +52,7 @@ def read_cifar(filenames, cifar_classnum):
...
@@ -52,7 +52,7 @@ def read_cifar(filenames, cifar_classnum):
if
cifar_classnum
==
10
:
if
cifar_classnum
==
10
:
label
=
dic
[
b
'labels'
]
label
=
dic
[
b
'labels'
]
IMG_NUM
=
10000
# cifar10 data are split into blocks of 10000
IMG_NUM
=
10000
# cifar10 data are split into blocks of 10000
el
if
cifar_classnum
==
100
:
el
se
:
label
=
dic
[
b
'fine_labels'
]
label
=
dic
[
b
'fine_labels'
]
IMG_NUM
=
50000
if
'train'
in
fname
else
10000
IMG_NUM
=
50000
if
'train'
in
fname
else
10000
fo
.
close
()
fo
.
close
()
...
...
tensorpack/dataflow/serialize.py
View file @
d1cc5a4a
...
@@ -245,9 +245,10 @@ if __name__ == '__main__':
...
@@ -245,9 +245,10 @@ if __name__ == '__main__':
print
(
"Numpy Finished, "
,
idx
)
print
(
"Numpy Finished, "
,
idx
)
print
(
time
.
time
())
print
(
time
.
time
())
HDF5Serializer
.
save
(
ds
,
'out.h5'
)
paths
=
[
'p1'
,
'p2'
]
HDF5Serializer
.
save
(
ds
,
'out.h5'
,
paths
)
print
(
time
.
time
())
print
(
time
.
time
())
df
=
HDF5Serializer
.
load
(
'out.h5'
)
df
=
HDF5Serializer
.
load
(
'out.h5'
,
paths
)
df
.
reset_state
()
df
.
reset_state
()
for
idx
,
dp
in
enumerate
(
df
):
for
idx
,
dp
in
enumerate
(
df
):
pass
pass
...
...
tensorpack/input_source/input_source_base.py
View file @
d1cc5a4a
...
@@ -21,10 +21,10 @@ def get_tensors_inputs(placeholders, tensors, names):
...
@@ -21,10 +21,10 @@ def get_tensors_inputs(placeholders, tensors, names):
Args:
Args:
placeholders (list[Tensor]):
placeholders (list[Tensor]):
tensors (list[Tensor]): list of tf.Tensor
tensors (list[Tensor]): list of tf.Tensor
names (list[str]): names matching the tensors
names (list[str]): names matching the
given
tensors
Returns:
Returns:
list[Tensor]: inputs to used
with build_graph()
,
list[Tensor]: inputs to used
for the tower function
,
with the corresponding placeholders replaced by tensors.
with the corresponding placeholders replaced by tensors.
"""
"""
assert
len
(
tensors
)
==
len
(
names
),
\
assert
len
(
tensors
)
==
len
(
names
),
\
...
@@ -74,9 +74,10 @@ class InputSource(object):
...
@@ -74,9 +74,10 @@ class InputSource(object):
def
get_input_tensors
(
self
):
def
get_input_tensors
(
self
):
"""
"""
Returns:
Returns:
list: A list of tensors corresponding to the inputs of the model,
list[Tensor]: A list of tensors corresponding to the inputs of the model.
used as input of :func:`build_graph`.
Will be used as input for the tower function.
For non-placeholder tensors, should always create and return new tensors when called.
This method should always create and return new tensors when called,
unless it returns placeholders.
"""
"""
return
self
.
_get_input_tensors
()
return
self
.
_get_input_tensors
()
...
@@ -204,8 +205,8 @@ class ProxyInputSource(InputSource):
...
@@ -204,8 +205,8 @@ class ProxyInputSource(InputSource):
def
remap_input_source
(
input
,
names
):
def
remap_input_source
(
input
,
names
):
"""
"""
When you have some :class:`InputSource` which doesn't match the inputs
in
When you have some :class:`InputSource` which doesn't match the inputs
of
your
:class:`ModelDesc`
, use `RemapInputSource`.
your
tower function
, use `RemapInputSource`.
It produces placeholders for all the inputs in your model,
It produces placeholders for all the inputs in your model,
except that the corresponding ones are replaced with the tensor produced
except that the corresponding ones are replaced with the tensor produced
by the given :class:`InputSource`.
by the given :class:`InputSource`.
...
...
tensorpack/models/batch_norm.py
View file @
d1cc5a4a
...
@@ -141,12 +141,10 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -141,12 +141,10 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
if
axis
is
None
:
if
axis
is
None
:
if
ndims
==
2
:
if
ndims
==
2
:
data_format
=
'NHWC'
axis
=
1
axis
=
1
else
:
else
:
axis
=
1
if
data_format
==
'NCHW'
else
3
axis
=
1
if
data_format
==
'NCHW'
else
3
else
:
assert
axis
in
[
1
,
3
],
axis
data_format
=
'NCHW'
if
axis
==
1
else
'NHWC'
num_chan
=
shape
[
axis
]
num_chan
=
shape
[
axis
]
# parse training/ctx
# parse training/ctx
...
...
tensorpack/models/image_sample.py
View file @
d1cc5a4a
...
@@ -3,6 +3,7 @@
...
@@ -3,6 +3,7 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
from
..utils.develop
import
log_deprecated
from
..utils.develop
import
log_deprecated
from
.common
import
layer_register
from
.common
import
layer_register
...
@@ -102,7 +103,6 @@ def ImageSample(inputs, borderMode='repeat'):
...
@@ -102,7 +103,6 @@ def ImageSample(inputs, borderMode='repeat'):
class
TestSample
(
TestModel
):
class
TestSample
(
TestModel
):
def
test_ImageSample
(
self
):
def
test_ImageSample
(
self
):
import
numpy
as
np
h
,
w
=
3
,
4
h
,
w
=
3
,
4
def
np_sample
(
img
,
coords
):
def
np_sample
(
img
,
coords
):
...
@@ -139,7 +139,6 @@ class TestSample(TestModel):
...
@@ -139,7 +139,6 @@ class TestSample(TestModel):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
import
cv2
import
cv2
import
numpy
as
np
im
=
cv2
.
imread
(
'cat.jpg'
)
im
=
cv2
.
imread
(
'cat.jpg'
)
im
=
im
.
reshape
((
1
,)
+
im
.
shape
)
.
astype
(
'float32'
)
im
=
im
.
reshape
((
1
,)
+
im
.
shape
)
.
astype
(
'float32'
)
imv
=
tf
.
Variable
(
im
)
imv
=
tf
.
Variable
(
im
)
...
...
tensorpack/models/regularize.py
View file @
d1cc5a4a
...
@@ -29,6 +29,8 @@ def regularize_cost(regex, func, name='regularize_cost'):
...
@@ -29,6 +29,8 @@ def regularize_cost(regex, func, name='regularize_cost'):
the matched variables (only print once in multi-tower training).
the matched variables (only print once in multi-tower training).
In replicated mode, it will only regularize variables within the current tower.
In replicated mode, it will only regularize variables within the current tower.
If called under a TowerContext with `is_training==False`, this function returns a zero constant tensor.
Args:
Args:
regex (str): a regex to match variable names, e.g. "conv.*/W"
regex (str): a regex to match variable names, e.g. "conv.*/W"
func: the regularization function, which takes a tensor and returns a scalar tensor.
func: the regularization function, which takes a tensor and returns a scalar tensor.
...
...
tensorpack/train/interface.py
View file @
d1cc5a4a
...
@@ -51,7 +51,7 @@ def apply_default_prefetch(input_source_or_dataflow, trainer):
...
@@ -51,7 +51,7 @@ def apply_default_prefetch(input_source_or_dataflow, trainer):
def
launch_train_with_config
(
config
,
trainer
):
def
launch_train_with_config
(
config
,
trainer
):
"""
"""
Train with a :class:`TrainConfig` and a :class:`Trainer`, to
Train with a :class:`TrainConfig` and a :class:`Trainer`, to
present
a simple
training interface. It basically does the following
present
the simple and old
training interface. It basically does the following
3 things (and you can easily do them by yourself if you need more control):
3 things (and you can easily do them by yourself if you need more control):
1. Setup the input with automatic prefetching heuristics,
1. Setup the input with automatic prefetching heuristics,
...
@@ -76,12 +76,14 @@ def launch_train_with_config(config, trainer):
...
@@ -76,12 +76,14 @@ def launch_train_with_config(config, trainer):
assert
config
.
dataflow
is
not
None
or
config
.
data
is
not
None
assert
config
.
dataflow
is
not
None
or
config
.
data
is
not
None
model
=
config
.
model
model
=
config
.
model
inputs_desc
=
model
.
get_inputs_desc
()
input
=
config
.
data
or
config
.
dataflow
input
=
config
.
data
or
config
.
dataflow
input
=
apply_default_prefetch
(
input
,
trainer
)
input
=
apply_default_prefetch
(
input
,
trainer
)
# This is the only place where the `ModelDesc` abstraction is useful.
# We should gradually stay away from this unuseful abstraction.
# TowerFuncWrapper is a better abstraction (similar to tf.defun in the future)
trainer
.
setup_graph
(
trainer
.
setup_graph
(
inputs_desc
,
input
,
model
.
get_inputs_desc
()
,
input
,
model
.
_build_graph_get_cost
,
model
.
get_optimizer
)
model
.
_build_graph_get_cost
,
model
.
get_optimizer
)
_check_unused_regularization
()
_check_unused_regularization
()
trainer
.
train_with_defaults
(
trainer
.
train_with_defaults
(
...
...
tensorpack/utils/develop.py
View file @
d1cc5a4a
...
@@ -33,7 +33,7 @@ def create_dummy_class(klass, dependency):
...
@@ -33,7 +33,7 @@ def create_dummy_class(klass, dependency):
class
_DummyMetaClass
(
type
):
class
_DummyMetaClass
(
type
):
# throw error on class attribute access
# throw error on class attribute access
def
__getattr__
(
_
,
__
):
def
__getattr__
(
_
,
__
):
raise
Import
Error
(
"Cannot import '{}', therefore '{}' is not available"
.
format
(
dependency
,
klass
))
raise
Attribute
Error
(
"Cannot import '{}', therefore '{}' is not available"
.
format
(
dependency
,
klass
))
@
six
.
add_metaclass
(
_DummyMetaClass
)
@
six
.
add_metaclass
(
_DummyMetaClass
)
class
_Dummy
(
object
):
class
_Dummy
(
object
):
...
...
tests/run-tests.sh
View file @
d1cc5a4a
#!/bin/bash -e
#!/bin/bash -e
v
# File: run-tests.sh
# File: run-tests.sh
DIR
=
$(
dirname
$0
)
DIR
=
$(
dirname
$0
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment