Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
bcd0ce6d
Commit
bcd0ce6d
authored
Dec 25, 2015
by
ppwwyyxx
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
convnet
parent
83686e04
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
19 deletions
+19
-19
example_mnist.py
example_mnist.py
+19
-8
utils/utils.py
utils/utils.py
+0
-11
No files found.
example_mnist.py
View file @
bcd0ce6d
...
...
@@ -3,6 +3,12 @@
# File: example_mnist.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
# HACK protobuf
#import sys
#import os
#sys.path.insert(0, os.path.expanduser('~/.local/lib/python2.7/site-packages'))
import
tensorflow
as
tf
import
numpy
as
np
from
itertools
import
count
...
...
@@ -28,15 +34,20 @@ def get_model(input, label):
output: variable
cost: scalar variable
"""
input
=
tf
.
reshape
(
input
,
[
-
1
,
28
,
28
,
1
])
conv
=
Conv2D
(
'conv0'
,
input
,
out_channel
=
20
,
kernel_shape
=
3
,
padding
=
'same'
)
input
=
tf
.
reshape
(
input
,
[
-
1
,
28
*
28
])
fc0
=
FullyConnected
(
'fc0'
,
input
,
200
)
input
=
tf
.
reshape
(
input
,
[
-
1
,
IMAGE_SIZE
,
IMAGE_SIZE
,
1
])
conv0
=
Conv2D
(
'conv0'
,
input
,
out_channel
=
5
,
kernel_shape
=
3
,
padding
=
'valid'
)
pool0
=
tf
.
nn
.
max_pool
(
conv0
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
)
conv1
=
Conv2D
(
'conv1'
,
pool0
,
out_channel
=
10
,
kernel_shape
=
4
,
padding
=
'valid'
)
pool1
=
tf
.
nn
.
max_pool
(
conv1
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
)
feature
=
batch_flatten
(
pool1
)
fc0
=
FullyConnected
(
'fc0'
,
feature
,
512
)
fc0
=
tf
.
nn
.
relu
(
fc0
)
fc1
=
FullyConnected
(
'fc1'
,
fc0
,
out_dim
=
200
)
fc1
=
tf
.
nn
.
relu
(
fc1
)
fc2
=
FullyConnected
(
'lr'
,
fc1
,
out_dim
=
10
)
prob
=
tf
.
nn
.
softmax
(
fc2
,
name
=
'output'
)
...
...
utils/utils.py
View file @
bcd0ce6d
...
...
@@ -5,14 +5,3 @@
import
tensorflow
as
tf
__all__
=
[
'one_hot'
]
def
one_hot
(
y
,
num_labels
):
batch_size
=
tf
.
size
(
y
)
y
=
tf
.
expand_dims
(
y
,
1
)
indices
=
tf
.
expand_dims
(
tf
.
range
(
0
,
batch_size
),
1
)
concated
=
tf
.
concat
(
1
,
[
indices
,
y
])
onehot_labels
=
tf
.
sparse_to_dense
(
concated
,
tf
.
pack
([
batch_size
,
num_labels
]),
1.0
,
0.0
)
onehot_labels
.
set_shape
([
None
,
num_labels
])
return
tf
.
cast
(
onehot_labels
,
tf
.
float32
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment