Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
a50bb749
Commit
a50bb749
authored
Dec 29, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update readme
parent
05b18a47
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
19 additions
and
12 deletions
+19
-12
README.md
README.md
+2
-2
examples/GAN/README.md
examples/GAN/README.md
+3
-1
examples/ResNet/README.md
examples/ResNet/README.md
+1
-1
tensorpack/models/pool.py
tensorpack/models/pool.py
+13
-7
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+0
-1
No files found.
README.md
View file @
a50bb749
...
@@ -4,8 +4,8 @@ Neural Network Toolbox on TensorFlow
...
@@ -4,8 +4,8 @@ Neural Network Toolbox on TensorFlow
See some
[
examples
](
examples
)
to learn about the framework:
See some
[
examples
](
examples
)
to learn about the framework:
### Vision:
### Vision:
+
[
DoReFa-Net: train
ing
binary / low-bitwidth CNN on ImageNet
](
examples/DoReFa-Net
)
+
[
DoReFa-Net: train binary / low-bitwidth CNN on ImageNet
](
examples/DoReFa-Net
)
+
[
ResNet for
ImageNet/Cifar10/SVHN
](
examples/ResNet
)
+
[
Train ResNet on
ImageNet/Cifar10/SVHN
](
examples/ResNet
)
+
[
InceptionV3 on ImageNet
](
examples/Inception/inceptionv3.py
)
+
[
InceptionV3 on ImageNet
](
examples/Inception/inceptionv3.py
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection(HED)
](
examples/HED
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection(HED)
](
examples/HED
)
+
[
Spatial Transformer Networks on MNIST addition
](
examples/SpatialTransformer
)
+
[
Spatial Transformer Networks on MNIST addition
](
examples/SpatialTransformer
)
...
...
examples/GAN/README.md
View file @
a50bb749
...
@@ -29,10 +29,12 @@ Play with the [pretrained model](https://drive.google.com/drive/folders/0B9IPQTv
...
@@ -29,10 +29,12 @@ Play with the [pretrained model](https://drive.google.com/drive/folders/0B9IPQTv
Image-to-Image following the setup in
[
pix2pix
](
https://github.com/phillipi/pix2pix
)
.
Image-to-Image following the setup in
[
pix2pix
](
https://github.com/phillipi/pix2pix
)
.
It requires the datasets released by the original authors.
It requires the datasets released by the original authors.
W
ith the cityscapes dataset, it learns to generate semantic segmentation map of urban scene:
For example, w
ith the cityscapes dataset, it learns to generate semantic segmentation map of urban scene:


This is a visualization from tensorboard. Left to right: original, ground truth, model output.
## InfoGAN-mnist.py
## InfoGAN-mnist.py
Reproduce one mnist experiement in InfoGAN.
Reproduce one mnist experiement in InfoGAN.
...
...
examples/ResNet/README.md
View file @
a50bb749
## imagenet-resnet.py
## imagenet-resnet.py
Training
code of pre-activation ResNet on ImageNet. It follows the setup in
__Training__
code of pre-activation ResNet on ImageNet. It follows the setup in
[
fb.resnet.torch
](
https://github.com/facebook/fb.resnet.torch
)
and gets similar performance (with much fewer lines of code).
[
fb.resnet.torch
](
https://github.com/facebook/fb.resnet.torch
)
and gets similar performance (with much fewer lines of code).
Models can be
[
downloaded here
](
https://goo.gl/6XjK9V
)
.
Models can be
[
downloaded here
](
https://goo.gl/6XjK9V
)
.
...
...
tensorpack/models/pool.py
View file @
a50bb749
...
@@ -124,6 +124,19 @@ def BilinearUpSample(x, shape):
...
@@ -124,6 +124,19 @@ def BilinearUpSample(x, shape):
:param x: input NHWC tensor
:param x: input NHWC tensor
:param shape: an integer, the upsample factor
:param shape: an integer, the upsample factor
"""
"""
#inp_shape = tf.shape(x)
#return tf.image.resize_bilinear(x,
#tf.pack([inp_shape[1]*shape,inp_shape[2]*shape]),
#align_corners=True)
inp_shape
=
x
.
get_shape
()
.
as_list
()
ch
=
inp_shape
[
3
]
assert
ch
is
not
None
shape
=
int
(
shape
)
filter_shape
=
2
*
shape
def
bilinear_conv_filler
(
s
):
def
bilinear_conv_filler
(
s
):
"""
"""
s: width, height of the conv filter
s: width, height of the conv filter
...
@@ -136,13 +149,6 @@ def BilinearUpSample(x, shape):
...
@@ -136,13 +149,6 @@ def BilinearUpSample(x, shape):
for
y
in
range
(
s
):
for
y
in
range
(
s
):
ret
[
x
,
y
]
=
(
1
-
abs
(
x
/
f
-
c
))
*
(
1
-
abs
(
y
/
f
-
c
))
ret
[
x
,
y
]
=
(
1
-
abs
(
x
/
f
-
c
))
*
(
1
-
abs
(
y
/
f
-
c
))
return
ret
return
ret
inp_shape
=
x
.
get_shape
()
.
as_list
()
ch
=
inp_shape
[
3
]
assert
ch
is
not
None
shape
=
int
(
shape
)
filter_shape
=
2
*
shape
w
=
bilinear_conv_filler
(
filter_shape
)
w
=
bilinear_conv_filler
(
filter_shape
)
w
=
np
.
repeat
(
w
,
ch
*
ch
)
.
reshape
((
filter_shape
,
filter_shape
,
ch
,
ch
))
w
=
np
.
repeat
(
w
,
ch
*
ch
)
.
reshape
((
filter_shape
,
filter_shape
,
ch
,
ch
))
weight_var
=
tf
.
constant
(
w
,
tf
.
float32
,
weight_var
=
tf
.
constant
(
w
,
tf
.
float32
,
...
...
tensorpack/tfutils/sessinit.py
View file @
a50bb749
...
@@ -168,7 +168,6 @@ class ParamRestore(SessionInit):
...
@@ -168,7 +168,6 @@ class ParamRestore(SessionInit):
for
k
in
param_names
-
variable_names
:
for
k
in
param_names
-
variable_names
:
logger
.
warn
(
"Variable {} in the dict not found in the graph!"
.
format
(
k
))
logger
.
warn
(
"Variable {} in the dict not found in the graph!"
.
format
(
k
))
upd
=
SessionUpdate
(
sess
,
upd
=
SessionUpdate
(
sess
,
[
v
for
v
in
variables
if
\
[
v
for
v
in
variables
if
\
get_savename_from_varname
(
v
.
name
)
in
intersect
])
get_savename_from_varname
(
v
.
name
)
in
intersect
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment