Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
a1a957b4
Commit
a1a957b4
authored
Jun 25, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
linearwrap for several examples
parent
916d9a19
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
109 additions
and
112 deletions
+109
-112
examples/Atari2600/DQN.py
examples/Atari2600/DQN.py
+16
-15
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+34
-31
examples/load-alexnet.py
examples/load-alexnet.py
+1
-9
examples/load-vgg16.py
examples/load-vgg16.py
+31
-35
examples/mnist-convnet.py
examples/mnist-convnet.py
+10
-10
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+11
-11
tensorpack/models/__init__.py
tensorpack/models/__init__.py
+6
-1
No files found.
examples/Atari2600/DQN.py
View file @
a1a957b4
...
@@ -71,21 +71,22 @@ class Model(ModelDesc):
...
@@ -71,21 +71,22 @@ class Model(ModelDesc):
""" image: [0,255]"""
""" image: [0,255]"""
image
=
image
/
255.0
image
=
image
/
255.0
with
argscope
(
Conv2D
,
nl
=
PReLU
.
f
,
use_bias
=
True
):
with
argscope
(
Conv2D
,
nl
=
PReLU
.
f
,
use_bias
=
True
):
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
5
,
stride
=
1
)
l
=
(
LinearWrap
(
image
)
l
=
MaxPooling
(
'pool0'
,
l
,
2
)
.
Conv2D
(
'conv0'
,
out_channel
=
32
,
kernel_shape
=
5
)
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
=
32
,
kernel_shape
=
5
,
stride
=
1
)
.
MaxPooling
(
'pool0'
,
2
)
l
=
MaxPooling
(
'pool1'
,
l
,
2
)
.
Conv2D
(
'conv1'
,
out_channel
=
32
,
kernel_shape
=
5
)
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
=
64
,
kernel_shape
=
4
)
.
MaxPooling
(
'pool1'
,
2
)
l
=
MaxPooling
(
'pool2'
,
l
,
2
)
.
Conv2D
(
'conv2'
,
out_channel
=
64
,
kernel_shape
=
4
)
l
=
Conv2D
(
'conv3'
,
l
,
out_channel
=
64
,
kernel_shape
=
3
)
.
MaxPooling
(
'pool2'
,
2
)
.
Conv2D
(
'conv3'
,
out_channel
=
64
,
kernel_shape
=
3
)
# the original arch
#l = Conv2D('conv0', image, out_channel=32, kernel_shape=8, stride=4)
# the original arch
#l = Conv2D('conv1', l, out_channel=64, kernel_shape=4, stride=2)
#.Conv2D('conv0', image, out_channel=32, kernel_shape=8, stride=4)
#l = Conv2D('conv2', l, out_channel=64, kernel_shape=3)
#.Conv2D('conv1', out_channel=64, kernel_shape=4, stride=2)
#.Conv2D('conv2', out_channel=64, kernel_shape=3)
l
=
FullyConnected
(
'fc0'
,
l
,
512
,
nl
=
lambda
x
,
name
:
LeakyReLU
.
f
(
x
,
0.01
,
name
))
l
=
FullyConnected
(
'fct'
,
l
,
out_dim
=
NUM_ACTIONS
,
nl
=
tf
.
identity
)
.
FullyConnected
(
'fc0'
,
512
,
nl
=
lambda
x
,
name
:
LeakyReLU
.
f
(
x
,
0.01
,
name
))
.
FullyConnected
(
'fct'
,
NUM_ACTIONS
,
nl
=
tf
.
identity
)())
return
l
return
l
def
_build_graph
(
self
,
inputs
,
is_training
):
def
_build_graph
(
self
,
inputs
,
is_training
):
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
a1a957b4
...
@@ -101,40 +101,43 @@ class Model(ModelDesc):
...
@@ -101,40 +101,43 @@ class Model(ModelDesc):
def
activate
(
x
):
def
activate
(
x
):
return
fa
(
cabs
(
x
))
return
fa
(
cabs
(
x
))
l
=
image
/
256.0
image
=
image
/
256.0
with
argscope
(
BatchNorm
,
decay
=
0.9
,
epsilon
=
1e-4
,
use_local_stat
=
is_training
),
\
with
argscope
(
BatchNorm
,
decay
=
0.9
,
epsilon
=
1e-4
,
use_local_stat
=
is_training
),
\
argscope
(
Conv2D
,
use_bias
=
False
,
nl
=
tf
.
identity
):
argscope
(
Conv2D
,
use_bias
=
False
,
nl
=
tf
.
identity
):
l
=
Conv2D
(
'conv0'
,
l
,
48
,
5
,
padding
=
'VALID'
,
use_bias
=
True
)
logits
=
(
LinearWrap
(
image
)
l
=
MaxPooling
(
'pool0'
,
l
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv0'
,
48
,
5
,
padding
=
'VALID'
,
use_bias
=
True
)
l
=
activate
(
l
)
.
MaxPooling
(
'pool0'
,
2
,
padding
=
'SAME'
)
# 18
.
apply
(
activate
)
# 18
l
=
Conv2D
(
'conv1'
,
l
,
64
,
3
,
padding
=
'SAME'
)
.
Conv2D
(
'conv1'
,
64
,
3
,
padding
=
'SAME'
)
l
=
activate
(
BatchNorm
(
'bn1'
,
fg
(
l
)))
.
apply
(
fg
)
.
BatchNorm
(
'bn1'
)
.
apply
(
activate
)
l
=
Conv2D
(
'conv2'
,
l
,
64
,
3
,
padding
=
'SAME'
)
l
=
BatchNorm
(
'bn2'
,
fg
(
l
))
.
Conv2D
(
'conv2'
,
64
,
3
,
padding
=
'SAME'
)
l
=
MaxPooling
(
'pool1'
,
l
,
2
,
padding
=
'SAME'
)
.
apply
(
fg
)
l
=
activate
(
l
)
.
BatchNorm
(
'bn2'
)
# 9
.
MaxPooling
(
'pool1'
,
2
,
padding
=
'SAME'
)
l
=
Conv2D
(
'conv3'
,
l
,
128
,
3
,
padding
=
'VALID'
)
.
apply
(
activate
)
l
=
activate
(
BatchNorm
(
'bn3'
,
fg
(
l
)))
# 9
# 7
.
Conv2D
(
'conv3'
,
128
,
3
,
padding
=
'VALID'
)
.
apply
(
fg
)
l
=
Conv2D
(
'conv4'
,
l
,
128
,
3
,
padding
=
'SAME'
)
.
BatchNorm
(
'bn3'
)
.
apply
(
activate
)
l
=
activate
(
BatchNorm
(
'bn4'
,
fg
(
l
)))
# 7
l
=
Conv2D
(
'conv5'
,
l
,
128
,
3
,
padding
=
'VALID'
)
.
Conv2D
(
'conv4'
,
128
,
3
,
padding
=
'SAME'
)
l
=
activate
(
BatchNorm
(
'bn5'
,
fg
(
l
)))
.
apply
(
fg
)
# 5
.
BatchNorm
(
'bn4'
)
.
apply
(
activate
)
l
=
tf
.
nn
.
dropout
(
l
,
0.5
if
is_training
else
1.0
)
.
Conv2D
(
'conv5'
,
128
,
3
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv6'
,
l
,
512
,
5
,
padding
=
'VALID'
)
.
apply
(
fg
)
l
=
BatchNorm
(
'bn6'
,
fg
(
l
))
.
BatchNorm
(
'bn5'
)
.
apply
(
activate
)
l
=
cabs
(
l
)
# 5
.
tf
.
nn
.
dropout
(
0.5
if
is_training
else
1.0
)
logits
=
FullyConnected
(
'fc1'
,
l
,
10
,
nl
=
tf
.
identity
)
.
Conv2D
(
'conv6'
,
512
,
5
,
padding
=
'VALID'
)
.
apply
(
fg
)
.
BatchNorm
(
'bn6'
)
.
apply
(
cabs
)
.
FullyConnected
(
'fc1'
,
10
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
...
...
examples/load-alexnet.py
View file @
a1a957b4
...
@@ -3,22 +3,14 @@
...
@@ -3,22 +3,14 @@
# File: load-alexnet.py
# File: load-alexnet.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import
cv2
# tf bug
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
import
numpy
as
np
import
os
import
os
import
argparse
import
argparse
import
cPickle
as
pkl
from
tensorpack.train
import
TrainConfig
from
tensorpack
import
*
from
tensorpack.predict
import
PredictConfig
,
get_predict_func
from
tensorpack.models
import
*
from
tensorpack.utils
import
*
from
tensorpack.tfutils
import
*
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.tfutils.symbolic_functions
import
*
from
tensorpack.tfutils.summary
import
*
from
tensorpack.tfutils.summary
import
*
from
tensorpack.callbacks
import
*
from
tensorpack.dataflow
import
*
from
tensorpack.dataflow.dataset
import
ILSVRCMeta
from
tensorpack.dataflow.dataset
import
ILSVRCMeta
"""
"""
...
...
examples/load-vgg16.py
View file @
a1a957b4
...
@@ -40,39 +40,35 @@ class Model(ModelDesc):
...
@@ -40,39 +40,35 @@ class Model(ModelDesc):
with
argscope
(
Conv2D
,
kernel_shape
=
3
):
with
argscope
(
Conv2D
,
kernel_shape
=
3
):
# 224
# 224
l
=
Conv2D
(
'conv1_1'
,
image
,
64
)
logits
=
(
LinearWrap
(
image
)
l
=
Conv2D
(
'conv1_2'
,
l
,
64
)
.
Conv2D
(
'conv1_1'
,
64
)
l
=
MaxPooling
(
'pool1'
,
l
,
2
)
.
Conv2D
(
'conv1_2'
,
64
)
# 112
.
MaxPooling
(
'pool1'
,
2
)
# 112
l
=
Conv2D
(
'conv2_1'
,
l
,
128
)
.
Conv2D
(
'conv2_1'
,
128
)
l
=
Conv2D
(
'conv2_2'
,
l
,
128
)
.
Conv2D
(
'conv2_2'
,
128
)
l
=
MaxPooling
(
'pool2'
,
l
,
2
)
.
MaxPooling
(
'pool2'
,
2
)
# 56
# 56
.
Conv2D
(
'conv3_1'
,
256
)
l
=
Conv2D
(
'conv3_1'
,
l
,
256
)
.
Conv2D
(
'conv3_2'
,
256
)
l
=
Conv2D
(
'conv3_2'
,
l
,
256
)
.
Conv2D
(
'conv3_3'
,
256
)
l
=
Conv2D
(
'conv3_3'
,
l
,
256
)
.
MaxPooling
(
'pool3'
,
2
)
l
=
MaxPooling
(
'pool3'
,
l
,
2
)
# 28
# 28
.
Conv2D
(
'conv4_1'
,
512
)
.
Conv2D
(
'conv4_2'
,
512
)
l
=
Conv2D
(
'conv4_1'
,
l
,
512
)
.
Conv2D
(
'conv4_3'
,
512
)
l
=
Conv2D
(
'conv4_2'
,
l
,
512
)
.
MaxPooling
(
'pool4'
,
2
)
l
=
Conv2D
(
'conv4_3'
,
l
,
512
)
# 14
l
=
MaxPooling
(
'pool4'
,
l
,
2
)
.
Conv2D
(
'conv5_1'
,
512
)
# 14
.
Conv2D
(
'conv5_2'
,
512
)
.
Conv2D
(
'conv5_3'
,
512
)
l
=
Conv2D
(
'conv5_1'
,
l
,
512
)
.
MaxPooling
(
'pool5'
,
2
)
l
=
Conv2D
(
'conv5_2'
,
l
,
512
)
# 7
l
=
Conv2D
(
'conv5_3'
,
l
,
512
)
.
FullyConnected
(
'fc6'
,
4096
)
l
=
MaxPooling
(
'pool5'
,
l
,
2
)
.
tf
.
nn
.
dropout
(
keep_prob
)
# 7
.
FullyConnected
(
'fc7'
,
4096
)
.
tf
.
nn
.
dropout
(
keep_prob
)
l
=
FullyConnected
(
'fc6'
,
l
,
4096
)
.
FullyConnected
(
'fc8'
,
out_dim
=
1000
,
nl
=
tf
.
identity
)())
l
=
tf
.
nn
.
dropout
(
l
,
keep_prob
)
l
=
FullyConnected
(
'fc7'
,
l
,
4096
)
l
=
tf
.
nn
.
dropout
(
l
,
keep_prob
)
logits
=
FullyConnected
(
'fc8'
,
l
,
out_dim
=
1000
,
nl
=
tf
.
identity
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
def
run_test
(
path
,
input
):
def
run_test
(
path
,
input
):
...
@@ -104,8 +100,8 @@ def run_test(path, input):
...
@@ -104,8 +100,8 @@ def run_test(path, input):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
default
=
'0'
,
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
# nargs='*' in multi mode
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--load'
,
required
=
True
,
parser
.
add_argument
(
'--load'
,
required
=
True
,
help
=
'.npy model file generated by tensorpack.utils.loadcaffe'
)
help
=
'.npy model file generated by tensorpack.utils.loadcaffe'
)
parser
.
add_argument
(
'--input'
,
help
=
'an input image'
,
required
=
True
)
parser
.
add_argument
(
'--input'
,
help
=
'an input image'
,
required
=
True
)
...
...
examples/mnist-convnet.py
View file @
a1a957b4
...
@@ -34,16 +34,16 @@ class Model(ModelDesc):
...
@@ -34,16 +34,16 @@ class Model(ModelDesc):
nl
=
PReLU
.
f
nl
=
PReLU
.
f
image
=
image
*
2
-
1
image
=
image
*
2
-
1
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
nl
,
out_channel
=
32
):
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
nl
,
out_channel
=
32
):
logits
=
LinearWrap
(
image
)
\
logits
=
(
LinearWrap
(
image
)
# the starting brace is only for line-breaking
.
Conv2D
(
'conv0'
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv0'
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool0'
,
2
)
\
.
MaxPooling
(
'pool0'
,
2
)
.
Conv2D
(
'conv1'
,
padding
=
'SAME'
)
\
.
Conv2D
(
'conv1'
,
padding
=
'SAME'
)
.
Conv2D
(
'conv2'
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv2'
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool1'
,
2
)
\
.
MaxPooling
(
'pool1'
,
2
)
.
Conv2D
(
'conv3'
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv3'
,
padding
=
'VALID'
)
.
FullyConnected
(
'fc0'
,
512
)
\
.
FullyConnected
(
'fc0'
,
512
)
.
tf
.
nn
.
dropout
(
keep_prob
)
\
.
tf
.
nn
.
dropout
(
keep_prob
)
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)()
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)()
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
...
...
examples/svhn-digit-convnet.py
View file @
a1a957b4
...
@@ -28,17 +28,17 @@ class Model(ModelDesc):
...
@@ -28,17 +28,17 @@ class Model(ModelDesc):
image
=
image
/
128.0
-
1
image
=
image
/
128.0
-
1
l
=
Conv2D
(
'conv1'
,
image
,
24
,
5
,
padding
=
'VALID'
)
l
ogits
=
LinearWrap
(
image
)
\
l
=
MaxPooling
(
'pool1'
,
l
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv1'
,
24
,
5
,
padding
=
'VALID'
)
\
l
=
Conv2D
(
'conv2'
,
l
,
32
,
3
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool1'
,
2
,
padding
=
'SAME'
)
\
l
=
Conv2D
(
'conv3'
,
l
,
32
,
3
,
padding
=
'VALID'
)
.
Conv2D
(
'conv2'
,
32
,
3
,
padding
=
'VALID'
)
\
l
=
MaxPooling
(
'pool2'
,
l
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv3'
,
32
,
3
,
padding
=
'VALID'
)
\
l
=
Conv2D
(
'conv4'
,
l
,
64
,
3
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool2'
,
2
,
padding
=
'SAME'
)
\
.
Conv2D
(
'conv4'
,
64
,
3
,
padding
=
'VALID'
)
\
l
=
tf
.
nn
.
dropout
(
l
,
keep_prob
)
.
tf
.
nn
.
dropout
(
keep_prob
)
\
l
=
FullyConnected
(
'fc0'
,
l
,
512
,
.
FullyConnected
(
'fc0'
,
512
,
b_init
=
tf
.
constant_initializer
(
0.1
))
b_init
=
tf
.
constant_initializer
(
0.1
))
\
logits
=
FullyConnected
(
'linear'
,
l
,
out_dim
=
10
,
nl
=
tf
.
identity
)
.
FullyConnected
(
'linear'
,
out_dim
=
10
,
nl
=
tf
.
identity
)(
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
...
...
tensorpack/models/__init__.py
View file @
a1a957b4
...
@@ -54,10 +54,15 @@ class LinearWrap(object):
...
@@ -54,10 +54,15 @@ class LinearWrap(object):
return
f
return
f
else
:
else
:
if
layer_name
!=
'tf'
:
if
layer_name
!=
'tf'
:
logger
.
warn
(
"You're calling LinearWrap with something neither a layer nor 'tf'. Not officially supported yet!"
)
logger
.
warn
(
"You're calling LinearWrap
.__getattr__
with something neither a layer nor 'tf'. Not officially supported yet!"
)
assert
isinstance
(
layer
,
ModuleType
)
assert
isinstance
(
layer
,
ModuleType
)
return
LinearWrap
.
TFModuleFunc
(
layer
,
self
.
_t
)
return
LinearWrap
.
TFModuleFunc
(
layer
,
self
.
_t
)
def
apply
(
self
,
func
,
*
args
,
**
kwargs
):
""" send tensor to the first argument of a simple func"""
ret
=
func
(
self
.
_t
,
*
args
,
**
kwargs
)
return
LinearWrap
(
ret
)
def
__call__
(
self
):
def
__call__
(
self
):
return
self
.
_t
return
self
.
_t
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment