Commit 9c42c84f authored by Yuxin Wu's avatar Yuxin Wu

sort varnames in logging

parent 4e7977f5
......@@ -5,7 +5,7 @@ See some [examples](examples) to learn about the framework:
### Vision:
+ [DoReFa-Net: train binary / low-bitwidth CNN on ImageNet](examples/DoReFa-Net)
+ [Train ResNet on ImageNet/Cifar10/SVHN](examples/ResNet)
+ [Train ResNet on ImageNet / Cifar10 / SVHN](examples/ResNet)
+ [InceptionV3 on ImageNet](examples/Inception/inceptionv3.py)
+ [Fully-convolutional Network for Holistically-Nested Edge Detection(HED)](examples/HED)
+ [Spatial Transformer Networks on MNIST addition](examples/SpatialTransformer)
......@@ -58,10 +58,12 @@ The components are designed to be independent. You can use Model or DataFlow in
+ other requirements:
```
pip install --user -r requirements.txt
pip install --user -r opt-requirements.txt (some optional dependencies, you can install later if needed)
pip install --user -r opt-requirements.txt # (some optional dependencies, you can install later if needed)
```
+ Enable `import tensorpack` (or use `greadlink` from `coreutils` brew package if you're on OSX):
+ Enable `import tensorpack`:
```
export PYTHONPATH=$PYTHONPATH:`readlink -f path/to/tensorpack`
```
(or use `greadlink` from `coreutils` brew package if you're on OSX)
+ Use tcmalloc if running with large data
......@@ -141,7 +141,7 @@ class SaverRestore(SessionInit):
logger.warn("Variable {} in the graph not found in checkpoint!".format(v.op.name))
if len(chkpt_vars_used) < len(vars_available):
unused = vars_available - chkpt_vars_used
for name in unused:
for name in sorted(unused):
if not is_training_name(name):
logger.warn("Variable {} in checkpoint not found in the graph!".format(name))
return var_dict
......@@ -167,10 +167,10 @@ class ParamRestore(SessionInit):
logger.info("Params to restore: {}".format(
', '.join(map(str, intersect))))
for k in variable_names - param_names:
for k in sorted(variable_names - param_names):
if not is_training_name(k):
logger.warn("Variable {} in the graph not found in the dict!".format(k))
for k in param_names - variable_names:
for k in sorted(param_names - variable_names):
logger.warn("Variable {} in the dict not found in the graph!".format(k))
upd = SessionUpdate(sess,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment