Commit 9b69e860 authored by Yuxin Wu's avatar Yuxin Wu

fix pep8 style in examples/

parent 37e98945
......@@ -62,6 +62,8 @@ def get_player(viz=False, train=False):
pl = PreventStuckPlayer(pl, 30, 1)
pl = LimitLengthPlayer(pl, 30000)
return pl
common.get_player = get_player # so that eval functions in common can use the player
......@@ -92,9 +94,9 @@ class Model(ModelDesc):
.Conv2D('conv3', out_channel=64, kernel_shape=3)
# the original arch
#.Conv2D('conv0', image, out_channel=32, kernel_shape=8, stride=4)
#.Conv2D('conv1', out_channel=64, kernel_shape=4, stride=2)
#.Conv2D('conv2', out_channel=64, kernel_shape=3)
# .Conv2D('conv0', image, out_channel=32, kernel_shape=8, stride=4)
# .Conv2D('conv1', out_channel=64, kernel_shape=4, stride=2)
# .Conv2D('conv2', out_channel=64, kernel_shape=3)
.FullyConnected('fc0', 512, nl=LeakyReLU)())
if METHOD != 'Dueling':
......@@ -180,8 +182,8 @@ def get_config():
RunOp(lambda: M.update_target_param()),
dataset_train,
PeriodicCallback(Evaluator(EVAL_EPISODE, ['state'], ['Qvalue']), 3),
#HumanHyperParamSetter('learning_rate', 'hyper.txt'),
#HumanHyperParamSetter(ObjAttrParam(dataset_train, 'exploration'), 'hyper.txt'),
# HumanHyperParamSetter('learning_rate', 'hyper.txt'),
# HumanHyperParamSetter(ObjAttrParam(dataset_train, 'exploration'), 'hyper.txt'),
]),
# save memory for multiprocess evaluator
session_config=get_default_sess_config(0.6),
......@@ -189,6 +191,7 @@ def get_config():
step_per_epoch=STEP_PER_EPOCH,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -166,9 +166,9 @@ class AtariPlayer(RLEnvironment):
self.restart_episode()
return (r, isOver)
if __name__ == '__main__':
import sys
import time
def benchmark():
a = AtariPlayer(sys.argv[1], viz=False, height_range=(28, -8))
......@@ -189,7 +189,7 @@ if __name__ == '__main__':
import threading
import multiprocessing
for k in range(3):
#th = multiprocessing.Process(target=benchmark)
# th = multiprocessing.Process(target=benchmark)
th = threading.Thread(target=benchmark)
th.start()
time.sleep(0.02)
......@@ -201,8 +201,8 @@ if __name__ == '__main__':
rng = get_rng(num)
import time
while True:
#im = a.grab_image()
#cv2.imshow(a.romname, im)
# im = a.grab_image()
# cv2.imshow(a.romname, im)
act = rng.choice(range(num))
print(act)
r, o = a.action(act)
......
......@@ -113,6 +113,7 @@ def run_test(model_path, img_file):
viz = colorize(im, hm)
cv2.imwrite("output.jpg", viz)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load', required=True, help='.npy model file')
......
......@@ -22,8 +22,9 @@ def get_data():
dataset_train = BatchData(DisturbLabel(dataset.Mnist('train'), args.prob), 128)
dataset_test = BatchData(dataset.Mnist('test'), 256, remainder=True)
return dataset_train, dataset_test
mnist_example.get_data = get_data
mnist_example.get_data = get_data
IMAGE_SIZE = 28
......@@ -54,6 +55,7 @@ class Model(mnist_example.Model):
self.cost = tf.add_n([wd_cost, cost], name='cost')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -15,18 +15,19 @@ from disturb import DisturbLabel
import imp
svhn_example = imp.load_source('svhn_example',
os.path.join(os.path.dirname(__file__), '..', 'svhn-digit-convnet.py')))
Model=svhn_example.Model
get_config=svhn_example.get_config
os.path.join(os.path.dirname(__file__), '..', 'svhn-digit-convnet.py'))
Model = svhn_example.Model
get_config = svhn_example.get_config
def get_data():
d1=dataset.SVHNDigit('train')
d2=dataset.SVHNDigit('extra')
data_train=RandomMixData([d1, d2])
data_train=DisturbLabel(data_train, args.prob)
data_test=dataset.SVHNDigit('test')
d1 = dataset.SVHNDigit('train')
d2 = dataset.SVHNDigit('extra')
data_train = RandomMixData([d1, d2])
data_train = DisturbLabel(data_train, args.prob)
data_test = dataset.SVHNDigit('test')
augmentors=[
augmentors = [
imgaug.Resize((40, 40)),
imgaug.Brightness(30),
imgaug.Contrast((0.5, 1.5)),
......@@ -35,18 +36,20 @@ def get_data():
data_train = BatchData(data_train, 128)
data_train = PrefetchData(data_train, 5, 5)
augmentors = [ imgaug.Resize((40, 40)) ]
augmentors = [imgaug.Resize((40, 40))]
data_test = AugmentImageComponent(data_test, augmentors)
data_test = BatchData(data_test, 128, remainder=True)
return data_train, data_test
svhn_example.get_data = get_data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='a gpu to use')
parser.add_argument('--load', help='load model')
parser.add_argument('--prob', help='disturb prob', type=float, required=True)
parser.add_argument('--prob', help='disturb prob',
type=float, required=True)
args = parser.parse_args()
if args.gpu:
......
......@@ -290,6 +290,7 @@ def run_image(model, sess_init, inputs):
print(f + ":")
print(list(zip(names, prob[ret])))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='the physical ids of GPUs to use')
......
......@@ -140,8 +140,8 @@ def get_config():
imgaug.Brightness(30),
imgaug.Contrast((0.5, 1.5)),
# imgaug.GaussianDeform( # this is slow but helpful. only use it when you have lots of cpus
#[(0.2, 0.2), (0.2, 0.8), (0.8,0.8), (0.8,0.2)],
#(40,40), 0.2, 3),
# [(0.2, 0.2), (0.2, 0.8), (0.8,0.8), (0.8,0.2)],
# (40,40), 0.2, 3),
]
data_train = AugmentImageComponent(data_train, augmentors)
data_train = BatchData(data_train, 128)
......@@ -173,6 +173,7 @@ def get_config():
max_epoch=200,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='the GPU to use')
......
......@@ -134,6 +134,7 @@ def sample(model_path):
o = o[:, :, :, ::-1]
viz = next(build_patch_list(o, nr_row=10, nr_col=10, viz=True))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -22,7 +22,8 @@ from GAN import GANTrainer, build_GAN_losses
To train:
./Image2Image.py --data /path/to/datadir --mode {AtoB,BtoA}
# datadir should contain jpg images of shpae 2s x s, formed by A and B
# you can download some data from the original authors: https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/
# you can download some data from the original authors:
# https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/
# training visualization will appear be in tensorboard
Speed:
......@@ -193,7 +194,8 @@ def sample(datadir, model_path):
pred = SimpleDatasetPredictor(pred, ds)
for o in pred.get_result():
o = o[0][:, :, :, ::-1]
viz = next(build_patch_list(o, nr_row=3, nr_col=2, viz=True))
next(build_patch_list(o, nr_row=3, nr_col=2, viz=True))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
......
......@@ -134,6 +134,7 @@ def sample(model_path):
viz = cv2.resize(viz, (800, 800))
interactive_imshow(viz)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -206,6 +206,7 @@ def run(model_path, image_path, output):
pred = outputs[5][0]
cv2.imwrite(output, pred * 255)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -165,7 +165,7 @@ def get_config():
InferenceRunner(dataset_val, [
ClassificationError('wrong-top1', 'val-top1-error'),
ClassificationError('wrong-top5', 'val-top5-error')]),
#HumanHyperParamSetter('learning_rate', 'hyper-googlenet.txt')
# HumanHyperParamSetter('learning_rate', 'hyper-googlenet.txt')
ScheduledHyperParamSetter('learning_rate',
[(8, 0.03), (14, 0.02), (17, 5e-3),
(19, 3e-3), (24, 1e-3), (26, 2e-4),
......@@ -177,6 +177,7 @@ def get_config():
max_epoch=80,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -19,7 +19,8 @@ import multiprocessing
InceptionV3 on ILSVRC12.
See "Rethinking the Inception Architecture for Computer Vision", arxiv:1512.00567
This config follows the official inceptionv3 setup (https://github.com/tensorflow/models/tree/master/inception/inception)
This config follows the official inceptionv3 setup
(https://github.com/tensorflow/models/tree/master/inception/inception)
with much much fewer lines of code.
It reaches 74% single-crop validation accuracy,
and has the same running speed as the official code.
......@@ -284,6 +285,7 @@ def get_config():
max_epoch=100,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -15,6 +15,7 @@ import six
from tensorpack import *
from tensorpack.RL import *
from common import play_one_episode
IMAGE_SIZE = (84, 84)
FRAME_HISTORY = 4
......@@ -24,8 +25,6 @@ IMAGE_SHAPE3 = IMAGE_SIZE + (CHANNEL,)
NUM_ACTIONS = None
ENV_NAME = None
from common import play_one_episode
def get_player(dumpdir=None):
pl = GymEnv(ENV_NAME, dumpdir=dumpdir, auto_restart=False)
......@@ -82,6 +81,7 @@ def run_submission(cfg, output, nr):
def do_submit(output):
gym.upload(output, api_key='xxx')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -62,6 +62,8 @@ def get_player(viz=False, train=False, dumpdir=None):
pl = PreventStuckPlayer(pl, 30, 1)
pl = LimitLengthPlayer(pl, 40000)
return pl
common.get_player = get_player
......@@ -220,6 +222,7 @@ def get_config():
max_epoch=1000,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -153,6 +153,7 @@ def get_config():
max_epoch=400,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -159,9 +159,9 @@ def get_data(train_or_test):
imgaug.Saturation(0.4),
imgaug.Lighting(0.1,
eigval=[0.2175, 0.0188, 0.0045],
eigvec=[[-0.5675, 0.7192, 0.4009],
eigvec=[[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203]]
[-0.5836, -0.6948, 0.4203]]
)]),
imgaug.Clip(),
imgaug.Flip(horiz=True),
......@@ -221,6 +221,7 @@ def eval_on_ILSVRC12(model_file, data_dir):
print("Top1 Error: {}".format(acc1.ratio))
print("Top5 Error: {}".format(acc5.ratio))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -95,10 +95,10 @@ class Model(ModelDesc):
def get_inference_augmentor():
# load ResNet mean from Kaiming:
#from tensorpack.utils.loadcaffe import get_caffe_pb
#obj = get_caffe_pb().BlobProto()
# from tensorpack.utils.loadcaffe import get_caffe_pb
# obj = get_caffe_pb().BlobProto()
# obj.ParseFromString(open('ResNet_mean.binaryproto').read())
#pp_mean_224 = np.array(obj.data).reshape(3, 224, 224).transpose(1,2,0)
# pp_mean_224 = np.array(obj.data).reshape(3, 224, 224).transpose(1,2,0)
meta = ILSVRCMeta()
pp_mean = meta.get_per_pixel_mean()
......@@ -194,6 +194,7 @@ def name_conversion(caffe_layer_name):
int(layer_group) - 2, layer_block, layer_type) + tf_name
return tf_name
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -83,6 +83,7 @@ def get_config():
max_epoch=500,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -167,6 +167,7 @@ def get_config():
max_epoch=500,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -15,8 +15,12 @@ from tensorpack.utils.stats import OnlineMoments
import bob.ap
CHARSET = set(string.ascii_lowercase + ' ')
PHONEME_LIST = "aa,ae,ah,ao,aw,ax,ax-h,axr,ay,b,bcl,ch,d,dcl,dh,dx,eh,el,em,en,eng,epi,er,ey,f,g,gcl,h#,hh,hv,ih,ix,iy,jh,k,kcl,l,m,n,ng,nx,ow,oy,p,pau,pcl,q,r,s,sh,t,tcl,th,uh,uw,ux,v,w,y,z,zh".split(
',')
PHONEME_LIST = [
'aa', 'ae', 'ah', 'ao', 'aw', 'ax', 'ax-h', 'axr', 'ay', 'b', 'bcl', 'ch', 'd', 'dcl', 'dh',
'dx', 'eh', 'el', 'em', 'en', 'eng', 'epi', 'er', 'ey', 'f', 'g', 'gcl', 'h#', 'hh', 'hv', 'ih',
'ix', 'iy', 'jh', 'k', 'kcl', 'l', 'm', 'n', 'ng', 'nx', 'ow', 'oy', 'p', 'pau', 'pcl', 'q', 'r',
's', 'sh', 't', 'tcl', 'th', 'uh', 'uw', 'ux', 'v', 'w', 'y', 'z', 'zh']
PHONEME_DIC = {v: k for k, v in enumerate(PHONEME_LIST)}
WORD_DIC = {v: k for k, v in enumerate(string.ascii_lowercase + ' ')}
......@@ -110,6 +114,7 @@ def compute_mean_std(db, fname):
with open(fname, 'wb') as f:
f.write(serialize.dumps([o.mean, o.std]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(title='command', dest='command')
......
......@@ -109,6 +109,7 @@ def get_config(ds_train, ds_test):
max_epoch=70,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -161,6 +161,7 @@ def sample(path, start, length):
ret += c
print(ret)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -136,6 +136,7 @@ def get_config(cifar_classnum):
max_epoch=150,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -74,6 +74,7 @@ def run_test(path, input):
meta = ILSVRCMeta().get_synset_words_1000()
print("Top10 class names:", [meta[k] for k in ret])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -17,7 +17,8 @@ from tensorpack.dataflow.dataset import ILSVRCMeta
"""
Usage:
python -m tensorpack.utils.loadcaffe PATH/TO/VGG/{VGG_ILSVRC_16_layers_deploy.prototxt,VGG_ILSVRC_16_layers.caffemodel} vgg16.npy
python -m tensorpack.utils.loadcaffe \
PATH/TO/VGG/{VGG_ILSVRC_16_layers_deploy.prototxt,VGG_ILSVRC_16_layers.caffemodel} vgg16.npy
./load-vgg16.py --load vgg16.npy --input cat.png
"""
......@@ -84,6 +85,7 @@ def run_test(path, input):
meta = ILSVRCMeta().get_synset_words_1000()
print("Top10 class names:", [meta[k] for k in ret])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -129,6 +129,7 @@ def get_config():
max_epoch=100,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
......@@ -111,6 +111,7 @@ def get_config():
max_epoch=350,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
......
[flake8]
max-line-length = 120
ignore = F403,F401,F405,F841
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment