Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
99a216bf
Commit
99a216bf
authored
Jan 01, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
small fix on docs
parent
c3f5307e
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
7 additions
and
7 deletions
+7
-7
tensorpack/callbacks/param.py
tensorpack/callbacks/param.py
+1
-1
tensorpack/models/__init__.py
tensorpack/models/__init__.py
+2
-2
tensorpack/models/shapes.py
tensorpack/models/shapes.py
+2
-2
tensorpack/tfutils/varmanip.py
tensorpack/tfutils/varmanip.py
+1
-1
tensorpack/utils/logger.py
tensorpack/utils/logger.py
+1
-1
No files found.
tensorpack/callbacks/param.py
View file @
99a216bf
...
...
@@ -165,7 +165,7 @@ class ScheduledHyperParamSetter(HyperParamSetter):
def
__init__
(
self
,
param
,
schedule
,
interp
=
None
):
"""
:param schedule: [(epoch1, val1), (epoch2, val2), (epoch3, val3), ...]
(ep, val) means set the param to
`val`
after the `ep`th epoch.
(ep, val) means set the param to
"val"
after the `ep`th epoch.
If epoch == 0, the value is set before training.
:param interp: None: no interpolation. 'linear': linear interpolation
"""
...
...
tensorpack/models/__init__.py
View file @
99a216bf
...
...
@@ -27,8 +27,8 @@ for _, module_name, _ in walk_packages(
class
LinearWrap
(
object
):
""" A simple wrapper to easily create
linear
graph,
for layers with one input&output, or tf function with one input&output
""" A simple wrapper to easily create
"linear"
graph,
consisting of layers / symbolic functions with only one input & output.
"""
class
TFModuleFunc
(
object
):
...
...
tensorpack/models/shapes.py
View file @
99a216bf
...
...
@@ -14,8 +14,8 @@ def ConcatWith(x, dim, tensor):
A wrapper around `tf.concat` to support `LinearWrap`
:param x: the input tensor
:param dim: the dimension along which to concatenate
:param tensor: a tensor or list of tensor to concatenate with x.
x will be
at the beginning
:param tensor: a tensor or list of tensor to concatenate with x.
x will be
at the beginning
:return: tf.concat(dim, [x] + [tensor])
"""
if
type
(
tensor
)
!=
list
:
...
...
tensorpack/tfutils/varmanip.py
View file @
99a216bf
...
...
@@ -57,7 +57,7 @@ class SessionUpdate(object):
def
update
(
self
,
prms
):
"""
:param prms: dict of {variable name: value}
Any name in prms must be in the graph and in vars_to_update.
Any name in prms must be in the graph and in vars_to_update.
"""
for
name
,
value
in
six
.
iteritems
(
prms
):
assert
name
in
self
.
assign_ops
...
...
tensorpack/utils/logger.py
View file @
99a216bf
...
...
@@ -10,7 +10,7 @@ from datetime import datetime
from
six.moves
import
input
import
sys
__all__
=
[]
__all__
=
[
'set_logger_dir'
,
'disable_logger'
,
'auto_set_dir'
,
'warn_dependency'
]
class
_MyFormatter
(
logging
.
Formatter
):
def
format
(
self
,
record
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment