Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
9870d216
Commit
9870d216
authored
Nov 26, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
dynamic shape in deconv2d
parent
5aaf6410
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
62 additions
and
37 deletions
+62
-37
README.md
README.md
+8
-8
examples/GAN/DCGAN-CelebA.py
examples/GAN/DCGAN-CelebA.py
+17
-20
examples/GAN/demo/CelebA-vec.npy
examples/GAN/demo/CelebA-vec.npy
+0
-0
examples/load-alexnet.py
examples/load-alexnet.py
+1
-0
tensorpack/dataflow/common.py
tensorpack/dataflow/common.py
+1
-1
tensorpack/models/conv2d.py
tensorpack/models/conv2d.py
+33
-7
tensorpack/tfutils/sessinit.py
tensorpack/tfutils/sessinit.py
+1
-0
tensorpack/utils/viz.py
tensorpack/utils/viz.py
+1
-1
No files found.
README.md
View file @
9870d216
...
...
@@ -2,15 +2,15 @@
Neural Network Toolbox on TensorFlow
See some
[
examples
](
examples
)
to learn about the framework.
You can
actually
train them and reproduce the performance... not just to see how to write code.
You can train them and reproduce the performance... not just to see how to write code.
+
[
DoReFa-Net: training binary / low bitwidth CNN on ImageNet
](
examples/DoReFa-Net
)
+
[
ResNet for ImageNet/Cifar10/SVHN classification
](
examples/ResNet
)
+
[
InceptionV3 on ImageNet
](
examples/Inception/inceptionv3.py
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection
](
examples/HED
)
+
[
Spatial Transformer Network
s
on MNIST addition
](
examples/SpatialTransformer
)
+
[
Generative Adversarial Network
s
(GAN) variants
](
examples/GAN
)
+
[
D
QN
variants on Atari games
](
examples/Atari2600
)
+
[
Fully-convolutional Network for Holistically-Nested Edge Detection
(HED)
](
examples/HED
)
+
[
Spatial Transformer Network on MNIST addition
](
examples/SpatialTransformer
)
+
[
Generative Adversarial Network(GAN) variants
](
examples/GAN
)
+
[
D
eep Q-Network(DQN)
variants on Atari games
](
examples/Atari2600
)
+
[
Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym
](
examples/OpenAIGym
)
+
[
char-rnn language model
](
examples/char-rnn
)
...
...
@@ -20,13 +20,13 @@ Describe your training task with three components:
1.
__Model__, or graph.
`models/`
has some scoped abstraction of common models, but you can simply use
any symbolic functions available in tensorflow, or most functions in slim/tflearn/tensorlayer.
`LinearWrap`
and
`argscope`
makes large models look simpler
(
[
vgg example
](
https://github.com/ppwwyyxx/tensorpack/blob/master/examples/load-vgg16.py
)
).
`LinearWrap`
and
`argscope`
simplify large models
(
[
vgg example
](
https://github.com/ppwwyyxx/tensorpack/blob/master/examples/load-vgg16.py
)
).
2.
__DataFlow__. tensorpack allows and encourages complex data processing.
+ All data producer has an unified `generator` interface, allowing them to be composed to perform complex preprocessing.
+ Use Python to easily handle any data format, yet still keep
a good training speed
thanks to multiprocess prefetch & TF Queue prefetch.
For example, InceptionV3 can run in the same speed as the official code which reads data
using
TF operators.
+ Use Python to easily handle any data format, yet still keep
good performance
thanks to multiprocess prefetch & TF Queue prefetch.
For example, InceptionV3 can run in the same speed as the official code which reads data
by
TF operators.
3.
__Callbacks__, including everything you want to do apart from the training iterations, such as:
+
Change hyperparameters during training
...
...
examples/GAN/DCGAN-CelebA.py
View file @
9870d216
...
...
@@ -126,30 +126,29 @@ def sample(model_path):
o
=
o
[:,:,:,::
-
1
]
viz
=
next
(
build_patch_list
(
o
,
nr_row
=
10
,
nr_col
=
10
,
viz
=
True
))
def
vec
(
model_path
):
func
=
OfflinePredictor
(
PredictConfig
(
session_init
=
get_model_loader
(
model_path
),
model
=
Model
(),
input_names
=
[
'z'
],
output_names
=
[
'gen/gen'
]))
dic
=
np
.
load
(
'demo/CelebA-vec.npy'
)
.
item
()
assert
np
.
all
(
dic
[
'w_smile'
]
-
dic
[
'w_neutral'
]
\
+
dic
[
'm_neutral'
]
==
dic
[
'm_smile'
])
imgs
=
[]
for
z
in
[
'w_neutral'
,
'w_smile'
,
'm_neutral'
,
'm_smile'
]:
z
=
dic
[
z
]
img
=
func
([[
z
]])[
0
][
0
][:,:,::
-
1
]
img
=
(
img
+
1
)
*
128
imgs
.
append
(
img
)
viz
=
next
(
build_patch_list
(
imgs
,
nr_row
=
1
,
nr_col
=
4
,
viz
=
True
))
#
def vec(model_path):
#
func = OfflinePredictor(PredictConfig(
#
session_init=get_model_loader(model_path),
#
model=Model(),
#
input_names=['z'],
#
output_names=['gen/gen']))
#
dic = np.load('demo/CelebA-vec.npy').item()
#
assert np.all(
#
dic['w_smile'] - dic['w_neutral'] \
#
+ dic['m_neutral'] == dic['m_smile'])
#
imgs = []
#
for z in ['w_neutral', 'w_smile', 'm_neutral', 'm_smile']:
#
z = dic[z]
#
img = func([[z]])[0][0][:,:,::-1]
#
img = (img + 1) * 128
#
imgs.append(img)
#
viz = next(build_patch_list(imgs, nr_row=1, nr_col=4, viz=True))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
parser
.
add_argument
(
'--load'
,
help
=
'load model'
)
parser
.
add_argument
(
'--sample'
,
action
=
'store_true'
,
help
=
'run sampling'
)
parser
.
add_argument
(
'--vec'
,
action
=
'store_true'
,
help
=
'run vec arithmetic demo'
)
parser
.
add_argument
(
'--data'
,
help
=
'`image_align_celeba` directory of the celebA dataset'
)
args
=
parser
.
parse_args
()
use_global_argument
(
args
)
...
...
@@ -157,8 +156,6 @@ if __name__ == '__main__':
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
if
args
.
sample
:
sample
(
args
.
load
)
elif
args
.
vec
:
vec
(
args
.
load
)
else
:
assert
args
.
data
config
=
get_config
()
...
...
examples/GAN/demo/CelebA-vec.npy
deleted
100644 → 0
View file @
5aaf6410
File deleted
examples/load-alexnet.py
View file @
9870d216
...
...
@@ -3,6 +3,7 @@
# File: load-alexnet.py
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
from
__future__
import
print_function
import
tensorflow
as
tf
import
numpy
as
np
import
os
,
cv2
,
argparse
...
...
tensorpack/dataflow/common.py
View file @
9870d216
...
...
@@ -21,7 +21,7 @@ class TestDataSpeed(ProxyDataFlow):
self
.
test_size
=
size
def
get_data
(
self
):
with
get_tqdm
(
total
=
range
(
self
.
test_size
)
)
as
pbar
:
with
get_tqdm
(
total
=
self
.
test_size
)
as
pbar
:
for
dp
in
self
.
ds
.
get_data
():
pbar
.
update
()
for
dp
in
self
.
ds
.
get_data
():
...
...
tensorpack/models/conv2d.py
View file @
9870d216
...
...
@@ -34,7 +34,7 @@ def Conv2D(x, out_channel, kernel_shape,
"""
in_shape
=
x
.
get_shape
()
.
as_list
()
in_channel
=
in_shape
[
-
1
]
assert
in_channel
is
not
None
,
"
Input to Conv2D
cannot have unknown channel!"
assert
in_channel
is
not
None
,
"
[Conv2D] Input
cannot have unknown channel!"
assert
in_channel
%
split
==
0
assert
out_channel
%
split
==
0
...
...
@@ -65,6 +65,26 @@ def Conv2D(x, out_channel, kernel_shape,
nl
=
tf
.
nn
.
relu
return
nl
(
tf
.
nn
.
bias_add
(
conv
,
b
)
if
use_bias
else
conv
,
name
=
'output'
)
class
StaticDynamicShape
(
object
):
def
__init__
(
self
,
static
,
dynamic
):
self
.
static
=
static
self
.
dynamic
=
dynamic
def
apply_dynamic
(
self
,
f
):
try
:
return
f
(
self
.
static
)
except
:
return
f
(
self
.
dynamic
)
def
apply_static
(
self
,
f
):
try
:
return
f
(
self
.
static
)
except
:
return
None
def
apply
(
self
,
f
):
return
StaticDynamicShape
(
self
.
apply_static
(
f
),
self
.
apply_dynamic
(
f
))
@
layer_register
()
def
Deconv2D
(
x
,
out_shape
,
kernel_shape
,
stride
,
padding
=
'SAME'
,
...
...
@@ -86,8 +106,8 @@ def Deconv2D(x, out_shape, kernel_shape,
:returns: a NHWC tensor
"""
in_shape
=
x
.
get_shape
()
.
as_list
()[
1
:]
assert
None
not
in
in_shape
,
"Input to Deconv2D cannot have unknown shape!"
in_channel
=
in_shape
[
-
1
]
assert
in_channel
is
not
None
,
"[Deconv2D] Input cannot have unknown channel!"
kernel_shape
=
shape2d
(
kernel_shape
)
stride2d
=
shape2d
(
stride
)
stride4d
=
shape4d
(
stride
)
...
...
@@ -95,10 +115,16 @@ def Deconv2D(x, out_shape, kernel_shape,
if
isinstance
(
out_shape
,
int
):
out_channel
=
out_shape
shape3
=
[
stride2d
[
0
]
*
in_shape
[
0
],
stride2d
[
1
]
*
in_shape
[
1
],
out_shape
]
shp3_0
=
StaticDynamicShape
(
in_shape
[
0
],
tf
.
shape
(
x
)[
1
])
.
apply
(
lambda
x
:
stride2d
[
0
]
*
x
)
shp3_1
=
StaticDynamicShape
(
in_shape
[
1
],
tf
.
shape
(
x
)[
2
])
.
apply
(
lambda
x
:
stride2d
[
1
]
*
x
)
shp3_dyn
=
[
shp3_0
.
dynamic
,
shp3_1
.
dynamic
,
out_channel
]
shp3_static
=
[
shp3_0
.
static
,
shp3_1
.
static
,
out_channel
]
else
:
for
k
in
out_shape
:
if
not
isinstance
(
k
,
int
):
raise
ValueError
(
"[Deconv2D] out_shape is invalid!"
)
out_channel
=
out_shape
[
-
1
]
sh
ape3
=
out_shape
sh
p3_static
=
shp3_dyn
=
out_shape
filter_shape
=
kernel_shape
+
[
out_channel
,
in_channel
]
if
W_init
is
None
:
...
...
@@ -109,7 +135,7 @@ def Deconv2D(x, out_shape, kernel_shape,
if
use_bias
:
b
=
tf
.
get_variable
(
'b'
,
[
out_channel
],
initializer
=
b_init
)
out_shape
=
tf
.
pack
([
tf
.
shape
(
x
)[
0
]]
+
shape3
)
conv
=
tf
.
nn
.
conv2d_transpose
(
x
,
W
,
out_shape
,
stride4d
,
padding
=
padding
)
conv
.
set_shape
(
tf
.
TensorShape
([
None
]
+
sh
ape3
))
out_shape
_dyn
=
tf
.
pack
([
tf
.
shape
(
x
)[
0
]]
+
shp3_dyn
)
conv
=
tf
.
nn
.
conv2d_transpose
(
x
,
W
,
out_shape
_dyn
,
stride4d
,
padding
=
padding
)
conv
.
set_shape
(
tf
.
TensorShape
([
None
]
+
sh
p3_static
))
return
nl
(
tf
.
nn
.
bias_add
(
conv
,
b
)
if
use_bias
else
conv
,
name
=
'output'
)
tensorpack/tfutils/sessinit.py
View file @
9870d216
...
...
@@ -194,6 +194,7 @@ def get_model_loader(filename):
Get a corresponding model loader by looking at the file name
:return: either a ParamRestore or SaverRestore
"""
assert
os
.
path
.
isfile
(
filename
),
filename
if
filename
.
endswith
(
'.npy'
):
return
ParamRestore
(
np
.
load
(
filename
,
encoding
=
'latin1'
)
.
item
())
else
:
...
...
tensorpack/utils/viz.py
View file @
9870d216
...
...
@@ -144,7 +144,7 @@ def build_patch_list(patch_list,
start
=
end
def
dump_dataflow_images
(
df
,
index
=
0
,
batched
=
True
,
number
=
3
00
,
output_dir
=
None
,
number
=
10
00
,
output_dir
=
None
,
scale
=
1
,
resize
=
None
,
viz
=
None
,
flipRGB
=
False
,
exit_after
=
True
):
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment