Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
95037482
Commit
95037482
authored
Jan 02, 2016
by
ppwwyyxx
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
rollback cifar model to old one
parent
95f4b9b9
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
10 additions
and
15 deletions
+10
-15
example_cifar10.py
example_cifar10.py
+8
-13
tensorpack/models/conv2d.py
tensorpack/models/conv2d.py
+1
-1
tensorpack/models/fc.py
tensorpack/models/fc.py
+1
-1
No files found.
example_cifar10.py
View file @
95037482
...
...
@@ -10,10 +10,10 @@ import os
from
tensorpack.train
import
TrainConfig
,
start_train
from
tensorpack.models
import
*
from
tensorpack.callbacks
import
*
from
tensorpack.utils
import
*
from
tensorpack.utils.symbolic_functions
import
*
from
tensorpack.utils.summary
import
*
from
tensorpack.callbacks
import
*
from
tensorpack.dataflow
import
*
from
tensorpack.dataflow
import
imgaug
...
...
@@ -27,7 +27,7 @@ def get_model(inputs, is_training):
image
,
label
=
inputs
if
is_training
:
if
is_training
:
# slow?
image
,
label
=
tf
.
train
.
shuffle_batch
(
[
image
,
label
],
BATCH_SIZE
,
CAPACITY
,
MIN_AFTER_DEQUEUE
,
num_threads
=
6
,
enqueue_many
=
False
)
...
...
@@ -43,19 +43,14 @@ def get_model(inputs, is_training):
l
=
MaxPooling
(
'pool0'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
tf
.
nn
.
lrn
(
l
,
4
,
bias
=
1.0
,
alpha
=
0.001
/
9.0
,
beta
=
0.75
,
name
=
'norm0'
)
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
=
64
,
kernel_shape
=
5
,
padding
=
'SAME'
,
b_init
=
tf
.
constant_initializer
(
0.1
))
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
=
64
,
kernel_shape
=
5
,
padding
=
'SAME'
)
l
=
tf
.
nn
.
lrn
(
l
,
4
,
bias
=
1.0
,
alpha
=
0.001
/
9.0
,
beta
=
0.75
,
name
=
'norm1'
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
stride
=
2
,
padding
=
'SAME'
)
l
=
FullyConnected
(
'fc0'
,
l
,
384
,
b_init
=
tf
.
constant_initializer
(
0.1
))
l
=
FullyConnected
(
'fc1'
,
l
,
out_dim
=
192
,
b_init
=
tf
.
constant_initializer
(
0.1
))
l
=
FullyConnected
(
'fc0'
,
l
,
384
)
l
=
FullyConnected
(
'fc1'
,
l
,
out_dim
=
192
)
# fc will have activation summary by default. disable this for the output layer
logits
=
FullyConnected
(
'linear'
,
l
,
out_dim
=
10
,
summary_activation
=
False
,
nl
=
tf
.
identity
,
W_init
=
tf
.
truncated_normal_initializer
(
1
/
192.0
))
logits
=
FullyConnected
(
'fc2'
,
l
,
out_dim
=
10
,
summary_activation
=
False
,
nl
=
tf
.
identity
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
y
=
one_hot
(
label
,
10
)
...
...
@@ -73,7 +68,7 @@ def get_model(inputs, is_training):
SUMMARY_VARS_KEY
,
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
# weight decay on all W of fc layers
wd_cost
=
tf
.
mul
(
4e-3
,
wd_cost
=
tf
.
mul
(
1e-4
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
name
=
'regularize_loss'
)
tf
.
add_to_collection
(
COST_VARS_KEY
,
wd_cost
)
...
...
@@ -124,7 +119,7 @@ def get_config():
lr
=
tf
.
train
.
exponential_decay
(
learning_rate
=
1e-1
,
global_step
=
get_global_step_var
(),
decay_steps
=
dataset_train
.
size
()
*
35
0
,
decay_steps
=
dataset_train
.
size
()
*
20
0
,
decay_rate
=
0.1
,
staircase
=
True
,
name
=
'learning_rate'
)
tf
.
scalar_summary
(
'learning_rate'
,
lr
)
...
...
tensorpack/models/conv2d.py
View file @
95037482
...
...
@@ -31,7 +31,7 @@ def Conv2D(x, out_channel, kernel_shape,
stride
=
shape4d
(
stride
)
if
W_init
is
None
:
W_init
=
tf
.
truncated_normal_initializer
(
stddev
=
4e-
3
)
W_init
=
tf
.
truncated_normal_initializer
(
stddev
=
4e-
2
)
if
b_init
is
None
:
b_init
=
tf
.
constant_initializer
()
...
...
tensorpack/models/fc.py
View file @
95037482
...
...
@@ -17,7 +17,7 @@ def FullyConnected(x, out_dim, W_init=None, b_init=None, nl=tf.nn.relu):
in_dim
=
x
.
get_shape
()
.
as_list
()[
1
]
if
W_init
is
None
:
W_init
=
tf
.
truncated_normal_initializer
(
stddev
=
0.04
)
W_init
=
tf
.
truncated_normal_initializer
(
stddev
=
1.0
/
math
.
sqrt
(
float
(
in_dim
))
)
if
b_init
is
None
:
b_init
=
tf
.
constant_initializer
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment