Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
930af0b6
Commit
930af0b6
authored
Aug 03, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
typos & clean-ups (including #358)
parent
ebf1d570
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
10 additions
and
5 deletions
+10
-5
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+0
-1
examples/GAN/BEGAN.py
examples/GAN/BEGAN.py
+2
-1
examples/GAN/CycleGAN.py
examples/GAN/CycleGAN.py
+4
-1
examples/GAN/README.md
examples/GAN/README.md
+2
-1
examples/HED/README.md
examples/HED/README.md
+2
-1
No files found.
examples/A3C-Gym/train-atari.py
View file @
930af0b6
...
@@ -51,7 +51,6 @@ PREDICT_BATCH_SIZE = 15 # batch for efficient forward
...
@@ -51,7 +51,6 @@ PREDICT_BATCH_SIZE = 15 # batch for efficient forward
SIMULATOR_PROC
=
50
SIMULATOR_PROC
=
50
PREDICTOR_THREAD_PER_GPU
=
3
PREDICTOR_THREAD_PER_GPU
=
3
PREDICTOR_THREAD
=
None
PREDICTOR_THREAD
=
None
EVALUATE_PROC
=
min
(
multiprocessing
.
cpu_count
()
//
2
,
20
)
NUM_ACTIONS
=
None
NUM_ACTIONS
=
None
ENV_NAME
=
None
ENV_NAME
=
None
...
...
examples/GAN/BEGAN.py
View file @
930af0b6
...
@@ -18,7 +18,8 @@ from GAN import GANModelDesc, GANTrainer, MultiGPUGANTrainer
...
@@ -18,7 +18,8 @@ from GAN import GANModelDesc, GANTrainer, MultiGPUGANTrainer
Boundary Equilibrium GAN.
Boundary Equilibrium GAN.
See the docstring in DCGAN.py for usage.
See the docstring in DCGAN.py for usage.
A pretrained model on CelebA is at https://drive.google.com/open?id=0B5uDfUQ1JTglUmgyZV8zQmNOTVU
A pretrained model on CelebA is at
https://drive.google.com/open?id=0B5uDfUQ1JTglUmgyZV8zQmNOTVU
"""
"""
...
...
examples/GAN/CycleGAN.py
View file @
930af0b6
...
@@ -20,7 +20,10 @@ from GAN import GANTrainer, GANModelDesc
...
@@ -20,7 +20,10 @@ from GAN import GANTrainer, GANModelDesc
"""
"""
1. Download the dataset following the original project: https://github.com/junyanz/CycleGAN#train
1. Download the dataset following the original project: https://github.com/junyanz/CycleGAN#train
2. ./CycleGAN.py --data /path/to/datasets/horse2zebra
2. ./CycleGAN.py --data /path/to/datasets/horse2zebra
Training and testing visuliazations will be in tensorboard.
Training and testing visualizations will be in tensorboard.
This implementation doesn't use fake sample buffer.
It's not hard to add but I didn't observe any difference with it.
"""
"""
SHAPE
=
256
SHAPE
=
256
...
...
examples/GAN/README.md
View file @
930af0b6
...
@@ -37,7 +37,7 @@ Reproduce DCGAN following the setup in [dcgan.torch](https://github.com/soumith/
...
@@ -37,7 +37,7 @@ Reproduce DCGAN following the setup in [dcgan.torch](https://github.com/soumith/
## Image2Image.py
## Image2Image.py
Image-to-Image following the setup in
[
pix2pix
](
https://github.com/phillipi/pix2pix
)
.
Image-to-Image
translation
following the setup in
[
pix2pix
](
https://github.com/phillipi/pix2pix
)
.
For example, with the cityscapes dataset, it learns to generate semantic segmentation map of urban scene:
For example, with the cityscapes dataset, it learns to generate semantic segmentation map of urban scene:
...
@@ -71,5 +71,6 @@ Some BEGAN samples:
...
@@ -71,5 +71,6 @@ Some BEGAN samples:
## CycleGAN.py, DiscoGAN-CelebA.py
## CycleGAN.py, DiscoGAN-CelebA.py
Reproduce CycleGAN with the original datasets, and DiscoGAN on CelebA. They are pretty much the same idea with different architecture.
Reproduce CycleGAN with the original datasets, and DiscoGAN on CelebA. They are pretty much the same idea with different architecture.
CycleGAN horse-to-zebra in tensorboard:


examples/HED/README.md
View file @
930af0b6
...
@@ -27,7 +27,7 @@ To start training:
...
@@ -27,7 +27,7 @@ To start training:
```
bash
```
bash
./hed.py
--load
vgg16.npy
./hed.py
--load
vgg16.npy
```
```
It takes about 100k steps (~10 hour on a TitanX) to reach a reasonable performance.
It takes about 100k steps (~10 hour
s
on a TitanX) to reach a reasonable performance.
To inference (produce a heatmap at each level at out
*
.png):
To inference (produce a heatmap at each level at out
*
.png):
```
bash
```
bash
...
@@ -41,3 +41,4 @@ cat train_log/hed/stat.json | jq '.[] |
...
@@ -41,3 +41,4 @@ cat train_log/hed/stat.json | jq '.[] |
"\(.xentropy1)\t\(.xentropy2)\t\(.xentropy3)\t\(.xentropy4)\t\(.xentropy5)\t\(.xentropy6)"'
-r
|
\
"\(.xentropy1)\t\(.xentropy2)\t\(.xentropy3)\t\(.xentropy4)\t\(.xentropy5)\t\(.xentropy6)"'
-r
|
\
tpk-plot-point
--legend
1,2,3,4,5,final
--decay
0.8
tpk-plot-point
--legend
1,2,3,4,5,final
--decay
0.8
```
```
Or just open tensorboard.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment