Commit 930af0b6 authored by Yuxin Wu's avatar Yuxin Wu

typos & clean-ups (including #358)

parent ebf1d570
...@@ -51,7 +51,6 @@ PREDICT_BATCH_SIZE = 15 # batch for efficient forward ...@@ -51,7 +51,6 @@ PREDICT_BATCH_SIZE = 15 # batch for efficient forward
SIMULATOR_PROC = 50 SIMULATOR_PROC = 50
PREDICTOR_THREAD_PER_GPU = 3 PREDICTOR_THREAD_PER_GPU = 3
PREDICTOR_THREAD = None PREDICTOR_THREAD = None
EVALUATE_PROC = min(multiprocessing.cpu_count() // 2, 20)
NUM_ACTIONS = None NUM_ACTIONS = None
ENV_NAME = None ENV_NAME = None
......
...@@ -18,7 +18,8 @@ from GAN import GANModelDesc, GANTrainer, MultiGPUGANTrainer ...@@ -18,7 +18,8 @@ from GAN import GANModelDesc, GANTrainer, MultiGPUGANTrainer
Boundary Equilibrium GAN. Boundary Equilibrium GAN.
See the docstring in DCGAN.py for usage. See the docstring in DCGAN.py for usage.
A pretrained model on CelebA is at https://drive.google.com/open?id=0B5uDfUQ1JTglUmgyZV8zQmNOTVU A pretrained model on CelebA is at
https://drive.google.com/open?id=0B5uDfUQ1JTglUmgyZV8zQmNOTVU
""" """
......
...@@ -20,7 +20,10 @@ from GAN import GANTrainer, GANModelDesc ...@@ -20,7 +20,10 @@ from GAN import GANTrainer, GANModelDesc
""" """
1. Download the dataset following the original project: https://github.com/junyanz/CycleGAN#train 1. Download the dataset following the original project: https://github.com/junyanz/CycleGAN#train
2. ./CycleGAN.py --data /path/to/datasets/horse2zebra 2. ./CycleGAN.py --data /path/to/datasets/horse2zebra
Training and testing visuliazations will be in tensorboard. Training and testing visualizations will be in tensorboard.
This implementation doesn't use fake sample buffer.
It's not hard to add but I didn't observe any difference with it.
""" """
SHAPE = 256 SHAPE = 256
......
...@@ -37,7 +37,7 @@ Reproduce DCGAN following the setup in [dcgan.torch](https://github.com/soumith/ ...@@ -37,7 +37,7 @@ Reproduce DCGAN following the setup in [dcgan.torch](https://github.com/soumith/
## Image2Image.py ## Image2Image.py
Image-to-Image following the setup in [pix2pix](https://github.com/phillipi/pix2pix). Image-to-Image translation following the setup in [pix2pix](https://github.com/phillipi/pix2pix).
For example, with the cityscapes dataset, it learns to generate semantic segmentation map of urban scene: For example, with the cityscapes dataset, it learns to generate semantic segmentation map of urban scene:
...@@ -71,5 +71,6 @@ Some BEGAN samples: ...@@ -71,5 +71,6 @@ Some BEGAN samples:
## CycleGAN.py, DiscoGAN-CelebA.py ## CycleGAN.py, DiscoGAN-CelebA.py
Reproduce CycleGAN with the original datasets, and DiscoGAN on CelebA. They are pretty much the same idea with different architecture. Reproduce CycleGAN with the original datasets, and DiscoGAN on CelebA. They are pretty much the same idea with different architecture.
CycleGAN horse-to-zebra in tensorboard:
![cyclegan-sample](demo/CycleGAN-horse2zebra.jpg) ![cyclegan-sample](demo/CycleGAN-horse2zebra.jpg)
...@@ -27,7 +27,7 @@ To start training: ...@@ -27,7 +27,7 @@ To start training:
```bash ```bash
./hed.py --load vgg16.npy ./hed.py --load vgg16.npy
``` ```
It takes about 100k steps (~10 hour on a TitanX) to reach a reasonable performance. It takes about 100k steps (~10 hours on a TitanX) to reach a reasonable performance.
To inference (produce a heatmap at each level at out*.png): To inference (produce a heatmap at each level at out*.png):
```bash ```bash
...@@ -41,3 +41,4 @@ cat train_log/hed/stat.json | jq '.[] | ...@@ -41,3 +41,4 @@ cat train_log/hed/stat.json | jq '.[] |
"\(.xentropy1)\t\(.xentropy2)\t\(.xentropy3)\t\(.xentropy4)\t\(.xentropy5)\t\(.xentropy6)"' -r | \ "\(.xentropy1)\t\(.xentropy2)\t\(.xentropy3)\t\(.xentropy4)\t\(.xentropy5)\t\(.xentropy6)"' -r | \
tpk-plot-point --legend 1,2,3,4,5,final --decay 0.8 tpk-plot-point --legend 1,2,3,4,5,final --decay 0.8
``` ```
Or just open tensorboard.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment