Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
930481f2
Commit
930481f2
authored
Jun 04, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[dist trainer] docs & clean-ups
parent
23c643fb
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
39 additions
and
26 deletions
+39
-26
tensorpack/tfutils/common.py
tensorpack/tfutils/common.py
+2
-2
tensorpack/train/base.py
tensorpack/train/base.py
+1
-5
tensorpack/train/distributed.py
tensorpack/train/distributed.py
+36
-19
No files found.
tensorpack/tfutils/common.py
View file @
930481f2
...
...
@@ -39,8 +39,8 @@ def get_default_sess_config(mem_fraction=0.99):
conf
.
inter_op_parallelism_threads
=
0
conf
.
gpu_options
.
per_process_gpu_memory_fraction
=
mem_fraction
# TODO check version
conf
.
gpu_options
.
force_gpu_compatible
=
True
if
get_tf_version_number
()
>=
1.2
:
conf
.
gpu_options
.
force_gpu_compatible
=
True
conf
.
gpu_options
.
allocator_type
=
'BFC'
conf
.
gpu_options
.
allow_growth
=
True
...
...
tensorpack/train/base.py
View file @
930481f2
...
...
@@ -126,16 +126,12 @@ class Trainer(object):
self
.
_callbacks
=
Callbacks
(
self
.
_callbacks
)
self
.
_callbacks
.
setup_graph
(
weakref
.
proxy
(
self
))
if
self
.
is_chief
:
self
.
config
.
session_init
.
_setup_graph
()
# This might finalize the graph (in distributed)
logger
.
info
(
"Creating the session ..."
)
self
.
_create_session
()
if
self
.
is_chief
:
logger
.
info
(
"Initializing the session ..."
)
self
.
config
.
session_init
.
_run_
init
(
self
.
sess
)
self
.
config
.
session_init
.
init
(
self
.
sess
)
else
:
assert
isinstance
(
self
.
config
.
session_init
,
JustCurrentSession
),
\
"session_init is only valid for chief worker session!"
...
...
tensorpack/train/distributed.py
View file @
930481f2
...
...
@@ -4,6 +4,7 @@
import
tensorflow
as
tf
import
re
import
os
from
six.moves
import
range
from
..utils
import
logger
...
...
@@ -15,8 +16,6 @@ from ..tfutils.common import get_global_step_var, get_op_tensor_name
__all__
=
[
'DistributedReplicatedTrainer'
]
# TODO only trainable model vars are saved
class
OverrideToLocalVariable
(
object
):
"""
...
...
@@ -37,7 +36,24 @@ class OverrideToLocalVariable(object):
class
DistributedReplicatedTrainer
(
SingleCostFeedfreeTrainer
):
"""
Distributed replicated training.
Each worker process builds the same model on one or more GPUs.
Gradients across GPUs are averaged within the worker,
and get synchronously applied to the global copy of variables located on PS.
Then each worker copy the latest variables from PS back to local.
Note:
Gradients are not averaged across workers.
"""
def
__init__
(
self
,
config
,
server
):
"""
Args:
config (TrainConfig): the train config.
server (tf.train.Server): the server object with ps and workers
"""
self
.
server
=
server
server_def
=
server
.
server_def
self
.
cluster
=
tf
.
train
.
ClusterSpec
(
server_def
.
cluster
)
...
...
@@ -60,8 +76,7 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
self
.
cpu_device
=
'
%
s/cpu:0'
%
worker_prefix
self
.
raw_devices
=
[
'
%
s/
%
s:
%
i'
%
(
worker_prefix
,
'gpu'
,
i
)
for
i
in
range
(
self
.
nr_gpu
)]
# This device on which the queues for managing synchronization between
# servers should be stored.
# Device for queues for managing synchronization between servers
self
.
sync_queue_devices
=
[
'/job:ps/task:
%
s/cpu:0'
%
i
for
i
in
range
(
self
.
num_ps
)]
self
.
sync_queue_counter
=
0
...
...
@@ -145,12 +160,12 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
Returns:
list of copy ops
"""
# TODO do this for
each variable separately
?
# TODO do this for
variables together
?
opt
=
self
.
model
.
get_optimizer
()
var_update_ops
=
[]
for
vid
,
(
g
,
v
)
in
enumerate
(
ps_var_grads
):
apply_gradient_op
=
opt
.
apply_gradients
([(
g
,
v
)])
barrier
=
self
.
add_sync_queues_and_barrier
(
barrier
=
self
.
_
add_sync_queues_and_barrier
(
'param_update_barrier_{}'
.
format
(
vid
),
[
apply_gradient_op
])
with
tf
.
control_dependencies
([
barrier
]),
\
tf
.
device
(
self
.
cpu_device
):
...
...
@@ -163,8 +178,9 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
def
_setup
(
self
):
if
self
.
job_name
==
'ps'
:
logger
.
info
(
"Running ps {}"
.
format
(
self
.
task_index
))
self
.
server
.
join
()
return
# TODO exit and skip mainloop how?
logger
.
info
(
"Kill me with 'kill {}'"
.
format
(
os
.
getpid
()))
self
.
server
.
join
()
# this will never return #4713
return
with
tf
.
device
(
self
.
param_server_device
):
gs
=
get_global_step_var
()
assert
gs
.
device
,
gs
.
device
...
...
@@ -189,19 +205,20 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
self
.
_shadow_vars
=
[
v
for
(
_
,
v
)
in
ps_var_grads
]
self
.
_shadow_model_vars
=
DistributedReplicatedTrainer
.
_shadow_model_variables
(
self
.
_shadow_vars
)
# TODO add options to synchronize less
main_fetch
=
tf
.
group
(
*
var_update_ops
,
name
=
'main_fetches'
)
self
.
train_op
=
self
.
add_sync_queues_and_barrier
(
self
.
train_op
=
self
.
_
add_sync_queues_and_barrier
(
'post_copy_barrier'
,
[
main_fetch
])
# initial local_vars syncing
cb
=
RunOp
(
self
.
get_initial_sync_op
,
cb
=
RunOp
(
self
.
_
get_initial_sync_op
,
run_before
=
True
,
run_as_trigger
=
False
,
verbose
=
True
)
cb
.
chief_only
=
False
self
.
register_callback
(
cb
)
# model_variables syncing
if
len
(
self
.
_shadow_model_vars
)
and
self
.
is_chief
:
cb
=
RunOp
(
self
.
get_sync_model_vars_op
,
cb
=
RunOp
(
self
.
_
get_sync_model_vars_op
,
run_before
=
False
,
run_as_trigger
=
True
,
verbose
=
True
)
logger
.
warn
(
"For efficiency, local MODEL_VARIABLES are only synced to PS once "
"every epoch. Be careful if you save the model more frequenctly."
)
...
...
@@ -236,12 +253,12 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
self
.
config
.
session_creator
=
_Creator
()
def
add_sync_queues_and_barrier
(
self
,
name_prefix
,
enqueue_after_list
):
def
_add_sync_queues_and_barrier
(
self
,
name
,
dependencies
):
"""Adds ops to enqueue on all worker queues.
Args:
name
_prefix
: prefixed for the shared_name of ops.
enqueue_after_list
: control dependency from ops.
name: prefixed for the shared_name of ops.
dependencies
: control dependency from ops.
Returns:
an op that should be used as control dependency before starting next step.
...
...
@@ -250,12 +267,12 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
with
tf
.
device
(
self
.
sync_queue_devices
[
self
.
sync_queue_counter
%
len
(
self
.
sync_queue_devices
)]):
sync_queues
=
[
tf
.
FIFOQueue
(
self
.
num_worker
,
[
tf
.
bool
],
shapes
=
[[]],
shared_name
=
'
%
s
%
s'
%
(
name
_prefix
,
i
))
shared_name
=
'
%
s
%
s'
%
(
name
,
i
))
for
i
in
range
(
self
.
num_worker
)]
queue_ops
=
[]
# For each other worker, add an entry in a queue, signaling that it can finish this step.
token
=
tf
.
constant
(
False
)
with
tf
.
control_dependencies
(
enqueue_after_list
):
with
tf
.
control_dependencies
(
dependencies
):
for
i
,
q
in
enumerate
(
sync_queues
):
if
i
!=
self
.
task_index
:
queue_ops
.
append
(
q
.
enqueue
(
token
))
...
...
@@ -264,9 +281,9 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
queue_ops
.
append
(
sync_queues
[
self
.
task_index
]
.
dequeue_many
(
len
(
sync_queues
)
-
1
))
return
tf
.
group
(
*
queue_ops
)
return
tf
.
group
(
*
queue_ops
,
name
=
name
)
def
get_initial_sync_op
(
self
):
def
_
get_initial_sync_op
(
self
):
"""
Get the op to copy-initialized all local variables from PS.
"""
...
...
@@ -289,7 +306,7 @@ class DistributedReplicatedTrainer(SingleCostFeedfreeTrainer):
ops
.
append
(
copy_to
.
assign
(
v
.
read_value
()))
return
tf
.
group
(
*
ops
,
name
=
'sync_{}_variables_from_ps'
.
format
(
nr_shadow_vars
))
def
get_sync_model_vars_op
(
self
):
def
_
get_sync_model_vars_op
(
self
):
"""
Get the op to sync local model_variables to PS.
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment