Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
900a7eb0
Commit
900a7eb0
authored
May 21, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add graph_memoized and fix #276
parent
9b710110
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
36 additions
and
21 deletions
+36
-21
examples/DoReFa-Net/dorefa.py
examples/DoReFa-Net/dorefa.py
+2
-2
tensorpack/models/regularize.py
tensorpack/models/regularize.py
+2
-2
tensorpack/tfutils/common.py
tensorpack/tfutils/common.py
+12
-17
tensorpack/utils/argtools.py
tensorpack/utils/argtools.py
+20
-0
No files found.
examples/DoReFa-Net/dorefa.py
View file @
900a7eb0
...
@@ -4,10 +4,10 @@
...
@@ -4,10 +4,10 @@
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
# Author: Yuxin Wu <ppwwyyxxc@gmail.com>
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorpack.utils.argtools
import
memoized
from
tensorpack.utils.argtools
import
graph_
memoized
@
memoized
@
graph_
memoized
def
get_dorefa
(
bitW
,
bitA
,
bitG
):
def
get_dorefa
(
bitW
,
bitA
,
bitG
):
"""
"""
return the three quantization functions fw, fa, fg, for weights, activations and gradients respectively
return the three quantization functions fw, fa, fg, for weights, activations and gradients respectively
...
...
tensorpack/models/regularize.py
View file @
900a7eb0
...
@@ -6,14 +6,14 @@ import tensorflow as tf
...
@@ -6,14 +6,14 @@ import tensorflow as tf
import
re
import
re
from
..utils
import
logger
from
..utils
import
logger
from
..utils.argtools
import
memoized
from
..utils.argtools
import
graph_
memoized
from
..tfutils.tower
import
get_current_tower_context
from
..tfutils.tower
import
get_current_tower_context
from
.common
import
layer_register
from
.common
import
layer_register
__all__
=
[
'regularize_cost'
,
'l2_regularizer'
,
'l1_regularizer'
,
'Dropout'
]
__all__
=
[
'regularize_cost'
,
'l2_regularizer'
,
'l1_regularizer'
,
'Dropout'
]
@
memoized
@
graph_
memoized
def
_log_regularizer
(
name
):
def
_log_regularizer
(
name
):
logger
.
info
(
"Apply regularizer for {}"
.
format
(
name
))
logger
.
info
(
"Apply regularizer for {}"
.
format
(
name
))
...
...
tensorpack/tfutils/common.py
View file @
900a7eb0
...
@@ -5,17 +5,14 @@
...
@@ -5,17 +5,14 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
six.moves
import
map
from
six.moves
import
map
from
..utils.argtools
import
graph_memoized
from
..utils.naming
import
(
from
..utils.naming
import
GLOBAL_STEP_OP_NAME
GLOBAL_STEP_VAR_NAME
,
GLOBAL_STEP_OP_NAME
)
__all__
=
[
'get_default_sess_config'
,
__all__
=
[
'get_default_sess_config'
,
'get_global_step_value'
,
'get_global_step_value'
,
'get_global_step_var'
,
'get_global_step_var'
,
#'get_local_step_var',
'get_op_tensor_name'
,
'get_op_tensor_name'
,
'get_tensors_by_names'
,
'get_tensors_by_names'
,
'get_op_or_tensor_by_name'
,
'get_op_or_tensor_by_name'
,
...
@@ -51,24 +48,22 @@ def get_default_sess_config(mem_fraction=0.99):
...
@@ -51,24 +48,22 @@ def get_default_sess_config(mem_fraction=0.99):
return
conf
return
conf
@
graph_memoized
def
get_global_step_var
():
def
get_global_step_var
():
"""
"""
Returns:
Returns:
tf.Tensor: the global_step variable in the current graph. create if
tf.Tensor: the global_step variable in the current graph. create if
doesn't exist.
doesn't exist.
"""
"""
try
:
scope
=
tf
.
get_variable_scope
()
return
tf
.
get_default_graph
()
.
get_tensor_by_name
(
GLOBAL_STEP_VAR_NAME
)
assert
scope
.
name
==
''
,
\
except
KeyError
:
"The global_step variable should be created under the root variable scope!"
scope
=
tf
.
get_variable_scope
()
with
tf
.
variable_scope
(
scope
,
reuse
=
False
),
\
assert
scope
.
name
==
''
,
\
tf
.
name_scope
(
None
):
"The global_step variable should be created under the root variable scope!"
var
=
tf
.
get_variable
(
GLOBAL_STEP_OP_NAME
,
with
tf
.
variable_scope
(
scope
,
reuse
=
False
),
\
initializer
=
tf
.
constant
(
0
,
dtype
=
tf
.
int64
),
tf
.
name_scope
(
None
):
trainable
=
False
,
dtype
=
tf
.
int64
)
var
=
tf
.
get_variable
(
GLOBAL_STEP_OP_NAME
,
return
var
initializer
=
tf
.
constant
(
0
,
dtype
=
tf
.
int64
),
trainable
=
False
,
dtype
=
tf
.
int64
)
return
var
def
get_global_step_value
():
def
get_global_step_value
():
...
...
tensorpack/utils/argtools.py
View file @
900a7eb0
...
@@ -38,6 +38,26 @@ memoized = functools.lru_cache(maxsize=None)
...
@@ -38,6 +38,26 @@ memoized = functools.lru_cache(maxsize=None)
""" Alias to :func:`functools.lru_cache` """
""" Alias to :func:`functools.lru_cache` """
def
graph_memoized
(
func
):
"""
Like memoized, but keep one cache per default graph.
"""
import
tensorflow
as
tf
GRAPH_ARG_NAME
=
'__IMPOSSIBLE_NAME_FOR_YOU__'
@
memoized
def
func_with_graph_arg
(
*
args
,
**
kwargs
):
kwargs
.
pop
(
GRAPH_ARG_NAME
)
return
func
(
*
args
,
**
kwargs
)
def
wrapper
(
*
args
,
**
kwargs
):
assert
GRAPH_ARG_NAME
not
in
kwargs
,
"No Way!!"
graph
=
tf
.
get_default_graph
()
kwargs
[
GRAPH_ARG_NAME
]
=
graph
return
func_with_graph_arg
(
*
args
,
**
kwargs
)
return
wrapper
_MEMOIZED_NOARGS
=
{}
_MEMOIZED_NOARGS
=
{}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment