Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
8f8fe80d
Commit
8f8fe80d
authored
Sep 26, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
FeedfreePredictor and example on ImageNet eval (fix #772)
parent
7f505225
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
106 additions
and
14 deletions
+106
-14
examples/ImageNetModels/imagenet_utils.py
examples/ImageNetModels/imagenet_utils.py
+12
-5
tensorpack/input_source/input_source.py
tensorpack/input_source/input_source.py
+3
-3
tensorpack/input_source/input_source_base.py
tensorpack/input_source/input_source_base.py
+7
-0
tensorpack/predict/feedfree.py
tensorpack/predict/feedfree.py
+72
-0
tensorpack/tfutils/dependency.py
tensorpack/tfutils/dependency.py
+2
-1
tensorpack/tfutils/sesscreate.py
tensorpack/tfutils/sesscreate.py
+1
-1
tensorpack/tfutils/tower.py
tensorpack/tfutils/tower.py
+9
-4
No files found.
examples/ImageNetModels/imagenet_utils.py
View file @
8f8fe80d
...
@@ -4,15 +4,17 @@
...
@@ -4,15 +4,17 @@
import
cv2
import
cv2
import
numpy
as
np
import
numpy
as
np
import
tqdm
import
multiprocessing
import
multiprocessing
import
tensorflow
as
tf
import
tensorflow
as
tf
from
abc
import
abstractmethod
from
abc
import
abstractmethod
from
tensorpack
import
imgaug
,
dataset
,
ModelDesc
from
tensorpack
import
ModelDesc
from
tensorpack.input_source
import
QueueInput
,
StagingInput
from
tensorpack.dataflow
import
(
from
tensorpack.dataflow
import
(
AugmentImageComponent
,
PrefetchDataZMQ
,
imgaug
,
dataset
,
AugmentImageComponent
,
PrefetchDataZMQ
,
BatchData
,
MultiThreadMapData
)
BatchData
,
MultiThreadMapData
)
from
tensorpack.predict
import
PredictConfig
,
SimpleDataset
Predictor
from
tensorpack.predict
import
PredictConfig
,
Feedfree
Predictor
from
tensorpack.utils.stats
import
RatioCounter
from
tensorpack.utils.stats
import
RatioCounter
from
tensorpack.models
import
regularize_cost
from
tensorpack.models
import
regularize_cost
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.tfutils.summary
import
add_moving_summary
...
@@ -126,12 +128,17 @@ def eval_on_ILSVRC12(model, sessinit, dataflow):
...
@@ -126,12 +128,17 @@ def eval_on_ILSVRC12(model, sessinit, dataflow):
input_names
=
[
'input'
,
'label'
],
input_names
=
[
'input'
,
'label'
],
output_names
=
[
'wrong-top1'
,
'wrong-top5'
]
output_names
=
[
'wrong-top1'
,
'wrong-top5'
]
)
)
pred
=
SimpleDatasetPredictor
(
pred_config
,
dataflow
)
acc1
,
acc5
=
RatioCounter
(),
RatioCounter
()
acc1
,
acc5
=
RatioCounter
(),
RatioCounter
()
for
top1
,
top5
in
pred
.
get_result
():
# This does not have a visible improvement over naive predictor,
# but will have an improvement if image_dtype is set to float32.
pred
=
FeedfreePredictor
(
pred_config
,
StagingInput
(
QueueInput
(
dataflow
),
device
=
'/gpu:0'
))
for
_
in
tqdm
.
trange
(
dataflow
.
size
()):
top1
,
top5
=
pred
()
batch_size
=
top1
.
shape
[
0
]
batch_size
=
top1
.
shape
[
0
]
acc1
.
feed
(
top1
.
sum
(),
batch_size
)
acc1
.
feed
(
top1
.
sum
(),
batch_size
)
acc5
.
feed
(
top5
.
sum
(),
batch_size
)
acc5
.
feed
(
top5
.
sum
(),
batch_size
)
print
(
"Top1 Error: {}"
.
format
(
acc1
.
ratio
))
print
(
"Top1 Error: {}"
.
format
(
acc1
.
ratio
))
print
(
"Top5 Error: {}"
.
format
(
acc5
.
ratio
))
print
(
"Top5 Error: {}"
.
format
(
acc5
.
ratio
))
...
...
tensorpack/input_source/input_source.py
View file @
8f8fe80d
...
@@ -547,10 +547,10 @@ class StagingInput(FeedfreeInput):
...
@@ -547,10 +547,10 @@ class StagingInput(FeedfreeInput):
self
.
fetches
=
tf
.
train
.
SessionRunArgs
(
self
.
fetches
=
tf
.
train
.
SessionRunArgs
(
fetches
=
[
self
.
stage_op
,
unstage_op
])
fetches
=
[
self
.
stage_op
,
unstage_op
])
def
_prefill
(
self
):
def
_prefill
(
self
,
sess
):
logger
.
info
(
"Pre-filling StagingArea ..."
)
logger
.
info
(
"Pre-filling StagingArea ..."
)
for
k
in
range
(
self
.
nr_stage
):
for
k
in
range
(
self
.
nr_stage
):
self
.
stage_op
.
run
()
self
.
stage_op
.
run
(
session
=
sess
)
logger
.
info
(
"{} element{} put into StagingArea on each tower."
.
format
(
logger
.
info
(
"{} element{} put into StagingArea on each tower."
.
format
(
self
.
nr_stage
,
"s were"
if
self
.
nr_stage
>
1
else
" was"
))
self
.
nr_stage
,
"s were"
if
self
.
nr_stage
>
1
else
" was"
))
...
@@ -559,7 +559,7 @@ class StagingInput(FeedfreeInput):
...
@@ -559,7 +559,7 @@ class StagingInput(FeedfreeInput):
# doing it in `before_train` may not work because QueueInput happens in before_train.
# doing it in `before_train` may not work because QueueInput happens in before_train.
if
not
self
.
_initialized
:
if
not
self
.
_initialized
:
self
.
_initialized
=
True
self
.
_initialized
=
True
self
.
_prefill
()
self
.
_prefill
(
ctx
.
session
)
# Only step the stagingarea when the input is evaluated in this sess.run
# Only step the stagingarea when the input is evaluated in this sess.run
fetches
=
ctx
.
original_args
.
fetches
fetches
=
ctx
.
original_args
.
fetches
if
dependency_of_fetches
(
fetches
,
self
.
_check_dependency_op
):
if
dependency_of_fetches
(
fetches
,
self
.
_check_dependency_op
):
...
...
tensorpack/input_source/input_source_base.py
View file @
8f8fe80d
...
@@ -118,6 +118,13 @@ class InputSource(object):
...
@@ -118,6 +118,13 @@ class InputSource(object):
All callbacks will be automatically marked as `chief_only=False`,
All callbacks will be automatically marked as `chief_only=False`,
so they will run on all nodes.
so they will run on all nodes.
Callbacks returned by :class:`InputSource` only supports a subset of callback's functionalities:
1. It cannot access the trainer, because an :class:`InputSource` can be used in pure inference.
2. It cannot use the following methods: `trigger_{step,epoch}, {before,after}_epoch`.
In other words, these callbacks should only have the basic functionality of `tf.train.SessionRunHooks`.
Returns:
Returns:
list[Callback]: extra callbacks needed by this InputSource.
list[Callback]: extra callbacks needed by this InputSource.
"""
"""
...
...
tensorpack/predict/feedfree.py
0 → 100644
View file @
8f8fe80d
#!/usr/bin/env python
from
tensorflow.python.training.monitored_session
\
import
_HookedSession
as
HookedSession
from
.base
import
PredictorBase
from
..tfutils.tower
import
PredictTowerContext
from
..callbacks
import
Callbacks
__all__
=
[
'FeedfreePredictor'
]
class
FeedfreePredictor
(
PredictorBase
):
"""
Create a predictor that takes inputs from an :class:`InputSource`, instead of from feeds.
An instance `pred` of :class:`FeedfreePredictor` can be called only by `pred()`, which returns
a list of output values as defined in config.output_names.
"""
def
__init__
(
self
,
config
,
input_source
):
"""
Args:
config (PredictConfig): the config to use.
input_source (InputSource): the feedfree InputSource to use.
Must match the inputs_desc in config.
"""
self
.
_config
=
config
self
.
_input_source
=
input_source
assert
config
.
return_input
is
False
,
\
"return_input is not supported in FeedfreePredictor! "
\
"If you need to fetch inputs, add the names to the output_names!"
self
.
_hooks
=
[]
self
.
graph
=
config
.
_maybe_create_graph
()
with
self
.
graph
.
as_default
():
self
.
_input_callbacks
=
Callbacks
(
self
.
_input_source
.
setup
(
config
.
inputs_desc
))
with
PredictTowerContext
(
''
):
self
.
_input_tensors
=
self
.
_input_source
.
get_input_tensors
()
config
.
tower_func
(
*
self
.
_input_tensors
)
self
.
_tower_handle
=
config
.
tower_func
.
towers
[
-
1
]
self
.
_output_tensors
=
self
.
_tower_handle
.
get_tensors
(
config
.
output_names
)
self
.
_input_callbacks
.
setup_graph
(
None
)
for
h
in
self
.
_input_callbacks
.
get_hooks
():
self
.
_register_hook
(
h
)
self
.
_initialize_session
()
def
_register_hook
(
self
,
hook
):
"""
Args:
hook (tf.train.SessionRunHook):
"""
self
.
_hooks
.
append
(
hook
)
def
_initialize_session
(
self
):
# init the session
self
.
_config
.
session_init
.
_setup_graph
()
self
.
_sess
=
self
.
_config
.
session_creator
.
create_session
()
self
.
_config
.
session_init
.
_run_init
(
self
.
_sess
)
with
self
.
_sess
.
as_default
():
self
.
_input_callbacks
.
before_train
()
self
.
_hooked_sess
=
HookedSession
(
self
.
_sess
,
self
.
_hooks
)
def
__call__
(
self
):
return
self
.
_hooked_sess
.
run
(
self
.
_output_tensors
)
def
_do_call
(
self
):
raise
NotImplementedError
(
"You're calling the wrong function!"
)
tensorpack/tfutils/dependency.py
View file @
8f8fe80d
...
@@ -51,7 +51,8 @@ def dependency_of_fetches(fetches, op):
...
@@ -51,7 +51,8 @@ def dependency_of_fetches(fetches, op):
"""
"""
try
:
try
:
from
tensorflow.python.client.session
import
_FetchHandler
as
FetchHandler
from
tensorflow.python.client.session
import
_FetchHandler
as
FetchHandler
handler
=
FetchHandler
(
tf
.
get_default_graph
(),
fetches
,
{})
# use the graph of the op, so that this function can be called without being under a default graph
handler
=
FetchHandler
(
op
.
graph
,
fetches
,
{})
targets
=
tuple
(
handler
.
fetches
()
+
handler
.
targets
())
targets
=
tuple
(
handler
.
fetches
()
+
handler
.
targets
())
except
ImportError
:
except
ImportError
:
if
isinstance
(
fetches
,
list
):
if
isinstance
(
fetches
,
list
):
...
...
tensorpack/tfutils/sesscreate.py
View file @
8f8fe80d
...
@@ -22,7 +22,7 @@ class NewSessionCreator(tf.train.ChiefSessionCreator):
...
@@ -22,7 +22,7 @@ class NewSessionCreator(tf.train.ChiefSessionCreator):
"""
"""
Args:
Args:
target, graph, config: same as :meth:`Session.__init__()`.
target, graph, config: same as :meth:`Session.__init__()`.
config: defaults to :func:`tfutils.get_default_sess_config()`
config:
a :class:`tf.ConfigProto` instance,
defaults to :func:`tfutils.get_default_sess_config()`
"""
"""
assert
graph
is
None
assert
graph
is
None
...
...
tensorpack/tfutils/tower.py
View file @
8f8fe80d
...
@@ -377,6 +377,9 @@ class TowerTensorHandle(object):
...
@@ -377,6 +377,9 @@ class TowerTensorHandle(object):
1. The name of the tensor without any tower prefix.
1. The name of the tensor without any tower prefix.
2. The name of an :class:`InputDesc`, if it is used when building the tower.
2. The name of an :class:`InputDesc`, if it is used when building the tower.
In the second case, this method will return the tensor that's used as the corresponding
input to the tower. Note that this tensor may have a different name (e.g. may be an output of a queue).
"""
"""
name
=
get_op_tensor_name
(
name
)[
1
]
name
=
get_op_tensor_name
(
name
)[
1
]
if
len
(
self
.
ns_name
):
if
len
(
self
.
ns_name
):
...
@@ -392,10 +395,12 @@ class TowerTensorHandle(object):
...
@@ -392,10 +395,12 @@ class TowerTensorHandle(object):
raise
raise
else
:
else
:
if
name
in
self
.
_extra_tensor_names
:
if
name
in
self
.
_extra_tensor_names
:
logger
.
warn
(
mapped_tensor
=
self
.
_extra_tensor_names
[
name
]
"'{}' may refer to both the tensor '{}' or the input '{}'."
.
format
(
logger
.
info
(
name
,
ret
.
name
,
self
.
_extra_tensor_names
[
name
]
.
name
)
+
"'{}' may refer to both the Tensor/Placeholder '{}' or the input to the tower '{}'."
.
format
(
"Assuming it is the tensor '{}'."
.
format
(
ret
.
name
))
name
,
ret
.
name
,
mapped_tensor
.
name
)
+
" Assuming it is the input '{}'."
.
format
(
mapped_tensor
.
name
))
return
mapped_tensor
return
ret
return
ret
def
get_tensors
(
self
,
names
):
def
get_tensors
(
self
,
names
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment