Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
88ed2c24
Commit
88ed2c24
authored
Dec 06, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update dorefa to use floor instead of round
parent
70e14a6b
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
37 additions
and
13 deletions
+37
-13
examples/DoReFa-Net/README.md
examples/DoReFa-Net/README.md
+3
-2
examples/DoReFa-Net/dorefa.py
examples/DoReFa-Net/dorefa.py
+1
-1
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+3
-2
tensorpack/__init__.py
tensorpack/__init__.py
+3
-0
tensorpack/dataflow/dftools.py
tensorpack/dataflow/dftools.py
+10
-4
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+6
-1
tensorpack/tfutils/common.py
tensorpack/tfutils/common.py
+5
-1
tensorpack/utils/fs.py
tensorpack/utils/fs.py
+6
-2
No files found.
examples/DoReFa-Net/README.md
View file @
88ed2c24
...
...
@@ -3,7 +3,8 @@ Code and model for the paper:
[
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
](
http://arxiv.org/abs/1606.06160
)
, by Zhou et al.
We hosted a demo at CVPR16 on behalf of Megvii, Inc, running a real-time 1/4-VGG size DoReFa-Net on ARM and half-VGG size DoReFa-Net on FPGA.
We're not planning to release those runtime bit-op libraries for now. In this repo, bit operations are run in float32.
We're not planning to release our C++ runtime for bit-operations.
In this repo, bit operations are performed through
`tf.float32`
.
Pretrained model for 1-2-6-AlexNet is available at
[
google drive
](
https://drive.google.com/a/%20megvii.com/folderview?id=0B308TeQzmFDLa0xOeVQwcXg1ZjQ
)
.
...
...
@@ -13,7 +14,7 @@ It's provided in the format of numpy dictionary, so it should be very easy to po
To use the script. You'll need:
+
TensorFlow
0.10,0.11rc1,0.11rc2. 0.11 is not supported due to
[
TF bug
](
https://github.com/tensorflow/tensorflow/issues/5888
)
+
TensorFlow
>= 0.10
+
OpenCV bindings for Python
...
...
examples/DoReFa-Net/dorefa.py
View file @
88ed2c24
...
...
@@ -17,7 +17,7 @@ def get_dorefa(bitW, bitA, bitG):
def
quantize
(
x
,
k
):
n
=
float
(
2
**
k
-
1
)
with
G
.
gradient_override_map
({
"Floor"
:
"Identity"
}):
return
tf
.
round
(
x
*
n
)
/
n
return
tf
.
floor
(
x
*
n
+
0.5
)
/
n
def
fw
(
x
):
if
bitW
==
32
:
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
88ed2c24
...
...
@@ -30,7 +30,7 @@ Accuracy:
With (W,A,G)=(32,32,32), error is about 2.9
%
.
Speed:
About 18 iteration/s on 1 Tesla M40
. (4721 iterations / epoch)
30~35 iteration/s on 1 TitanX Pascal
. (4721 iterations / epoch)
To Run:
./svhn-digit-dorefa.py --dorefa 1,2,4
...
...
@@ -45,8 +45,9 @@ class Model(ModelDesc):
return
[
InputVar
(
tf
.
float32
,
[
None
,
40
,
40
,
3
],
'input'
),
InputVar
(
tf
.
int32
,
[
None
],
'label'
)
]
def
_build_graph
(
self
,
input_vars
,
is_training
):
def
_build_graph
(
self
,
input_vars
):
image
,
label
=
input_vars
is_training
=
get_current_tower_context
()
.
is_training
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
# monkey-patch tf.get_variable to apply fw
...
...
tensorpack/__init__.py
View file @
88ed2c24
...
...
@@ -15,3 +15,6 @@ from tensorpack.predict import *
if
int
(
numpy
.
__version__
.
split
(
'.'
)[
1
])
<
9
:
logger
.
warn
(
"Numpy < 1.9 could be extremely slow on some tasks."
)
if
get_tf_version
()
<
10
:
logger
.
error
(
"tensorpack requires TensorFlow >= 0.10"
)
tensorpack/dataflow/dftools.py
View file @
88ed2c24
...
...
@@ -8,6 +8,7 @@ import multiprocessing as mp
import
six
from
six.moves
import
range
,
map
from
.base
import
DataFlow
from
..utils
import
get_tqdm
,
logger
from
..utils.concurrency
import
DIE
from
..utils.serialize
import
dumps
...
...
@@ -43,6 +44,7 @@ def dump_dataset_images(ds, dirname, max_count=None, index=0):
cv2
.
imwrite
(
os
.
path
.
join
(
dirname
,
"{}.jpg"
.
format
(
i
)),
img
)
def
dump_dataflow_to_lmdb
(
ds
,
lmdb_path
):
assert
isinstance
(
ds
,
DataFlow
),
type
(
ds
)
isdir
=
os
.
path
.
isdir
(
lmdb_path
)
if
isdir
:
assert
not
os
.
path
.
isfile
(
os
.
path
.
join
(
lmdb_path
,
'data.mdb'
)),
"LMDB file exists!"
...
...
@@ -52,16 +54,20 @@ def dump_dataflow_to_lmdb(ds, lmdb_path):
db
=
lmdb
.
open
(
lmdb_path
,
subdir
=
isdir
,
map_size
=
1099511627776
*
2
,
readonly
=
False
,
meminit
=
False
,
map_async
=
True
)
# need sync() at the end
with
get_tqdm
(
total
=
ds
.
size
())
as
pbar
:
try
:
sz
=
ds
.
size
()
except
NotImplementedError
:
sz
=
0
with
get_tqdm
(
total
=
sz
)
as
pbar
:
with
db
.
begin
(
write
=
True
)
as
txn
:
for
idx
,
dp
in
enumerate
(
ds
.
get_data
()):
txn
.
put
(
six
.
binary_type
(
idx
),
dumps
(
dp
))
pbar
.
update
()
keys
=
list
(
map
(
six
.
binary_type
,
range
(
idx
+
1
)))
txn
.
put
(
'__keys__'
,
dumps
(
keys
))
logger
.
info
(
"Flushing database ..."
)
db
.
sync
(
)
db
.
close
()
logger
.
info
(
"Flushing database ..."
)
db
.
sync
()
def
dataflow_to_process_queue
(
ds
,
size
,
nr_consumer
):
...
...
tensorpack/models/batch_norm.py
View file @
88ed2c24
...
...
@@ -9,6 +9,7 @@ from tensorflow.python.training import moving_averages
from
copy
import
copy
import
re
from
..tfutils.common
import
get_tf_version
from
..tfutils.tower
import
get_current_tower_context
from
..utils
import
logger
from
._common
import
layer_register
...
...
@@ -177,4 +178,8 @@ def BatchNormV2(x, use_local_stat=None, decay=0.9, epsilon=1e-5):
else
:
return
tf
.
identity
(
xn
,
name
=
'output'
)
BatchNorm
=
BatchNormV2
if
get_tf_version
()
>=
11
:
BatchNorm
=
BatchNormV2
else
:
logger
.
warn
(
"BatchNorm might be faster if you update TensorFlow"
)
BatchNorm
=
BatchNormV1
tensorpack/tfutils/common.py
View file @
88ed2c24
...
...
@@ -19,7 +19,8 @@ __all__ = ['get_default_sess_config',
'backup_collection'
,
'restore_collection'
,
'clear_collection'
,
'freeze_collection'
]
'freeze_collection'
,
'get_tf_version'
]
def
get_default_sess_config
(
mem_fraction
=
0.99
):
"""
...
...
@@ -104,3 +105,6 @@ def freeze_collection(keys):
backup
=
backup_collection
(
keys
)
yield
restore_collection
(
backup
)
def
get_tf_version
():
return
int
(
tf
.
__version__
.
split
(
'.'
)[
1
])
tensorpack/utils/fs.py
View file @
88ed2c24
...
...
@@ -8,7 +8,7 @@ from six.moves import urllib
import
errno
from
.
import
logger
__all__
=
[
'mkdir_p'
,
'download'
]
__all__
=
[
'mkdir_p'
,
'download'
,
'recursive_walk'
]
def
mkdir_p
(
dirname
):
""" make a dir recursively, but do nothing if the dir exists"""
...
...
@@ -21,7 +21,6 @@ def mkdir_p(dirname):
if
e
.
errno
!=
errno
.
EEXIST
:
raise
e
def
download
(
url
,
dir
):
mkdir_p
(
dir
)
fname
=
url
.
split
(
'/'
)[
-
1
]
...
...
@@ -46,5 +45,10 @@ def download(url, dir):
print
(
'Succesfully downloaded '
+
fname
+
" "
+
str
(
size
)
+
' bytes.'
)
return
fpath
def
recursive_walk
(
rootdir
):
for
r
,
dirs
,
files
in
os
.
walk
(
rootdir
):
for
f
in
files
:
yield
os
.
path
.
join
(
r
,
f
)
if
__name__
==
'__main__'
:
download
(
'http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz'
,
'.'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment