Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
8419ee3f
Commit
8419ee3f
authored
Aug 03, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Let InputSource.setup() returns the callbacks, to simplify trainer implementations
parent
398cb933
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
70 additions
and
52 deletions
+70
-52
examples/GAN/GAN.py
examples/GAN/GAN.py
+43
-37
tensorpack/callbacks/inference_runner.py
tensorpack/callbacks/inference_runner.py
+2
-4
tensorpack/graph_builder/input_source_base.py
tensorpack/graph_builder/input_source_base.py
+11
-1
tensorpack/graph_builder/predictor_factory.py
tensorpack/graph_builder/predictor_factory.py
+6
-0
tensorpack/train/base.py
tensorpack/train/base.py
+1
-2
tensorpack/train/multigpu.py
tensorpack/train/multigpu.py
+6
-6
tensorpack/train/simple.py
tensorpack/train/simple.py
+1
-2
No files found.
examples/GAN/GAN.py
View file @
8419ee3f
...
...
@@ -66,21 +66,24 @@ class GANModelDesc(ModelDescBase):
class
GANTrainer
(
Trainer
):
def
__init__
(
self
,
config
):
self
.
_input_source
=
QueueInput
(
config
.
dataflow
)
super
(
GANTrainer
,
self
)
.
__init__
(
config
)
input
=
QueueInput
(
config
.
dataflow
)
model
=
config
.
model
cbs
=
input
.
setup
(
model
.
get_inputs_desc
())
config
.
callbacks
.
extend
(
cbs
)
def
_setup
(
self
):
self
.
_setup_input_source
(
self
.
_input_source
)
with
TowerContext
(
''
,
is_training
=
True
):
self
.
model
.
build_graph
(
self
.
_input_source
)
opt
=
self
.
model
.
get_optimizer
()
model
.
build_graph
(
input
)
opt
=
model
.
get_optimizer
()
# by default, run one d_min after one g_min
g_min
=
opt
.
minimize
(
self
.
model
.
g_loss
,
var_list
=
self
.
model
.
g_vars
,
name
=
'g_op'
)
g_min
=
opt
.
minimize
(
model
.
g_loss
,
var_list
=
model
.
g_vars
,
name
=
'g_op'
)
with
tf
.
control_dependencies
([
g_min
]):
d_min
=
opt
.
minimize
(
self
.
model
.
d_loss
,
var_list
=
self
.
model
.
d_vars
,
name
=
'd_op'
)
d_min
=
opt
.
minimize
(
model
.
d_loss
,
var_list
=
model
.
d_vars
,
name
=
'd_op'
)
self
.
train_op
=
d_min
super
(
GANTrainer
,
self
)
.
__init__
(
config
)
class
SeparateGANTrainer
(
Trainer
):
""" A GAN trainer which runs two optimization ops with a certain ratio, one in each step. """
...
...
@@ -90,30 +93,31 @@ class SeparateGANTrainer(Trainer):
d_period(int): period of each d_opt run
g_period(int): period of each g_opt run
"""
self
.
_input_source
=
QueueInput
(
config
.
dataflow
)
self
.
_d_period
=
int
(
d_period
)
self
.
_g_period
=
int
(
g_period
)
assert
min
(
d_period
,
g_period
)
==
1
super
(
SeparateGANTrainer
,
self
)
.
__init__
(
config
)
def
_setup
(
self
):
self
.
_setup_input_source
(
self
.
_input_source
)
input
=
QueueInput
(
config
.
dataflow
)
model
=
config
.
model
cbs
=
input
.
setup
(
model
.
get_inputs_desc
())
config
.
callbacks
.
extend
(
cbs
)
with
TowerContext
(
''
,
is_training
=
True
):
self
.
model
.
build_graph
(
self
.
_input_source
)
model
.
build_graph
(
input
)
opt
=
self
.
model
.
get_optimizer
()
opt
=
model
.
get_optimizer
()
self
.
d_min
=
opt
.
minimize
(
self
.
model
.
d_loss
,
var_list
=
self
.
model
.
d_vars
,
name
=
'd_min'
)
model
.
d_loss
,
var_list
=
model
.
d_vars
,
name
=
'd_min'
)
self
.
g_min
=
opt
.
minimize
(
self
.
model
.
g_loss
,
var_list
=
self
.
model
.
g_vars
,
name
=
'g_min'
)
self
.
_cnt
=
1
model
.
g_loss
,
var_list
=
model
.
g_vars
,
name
=
'g_min'
)
super
(
SeparateGANTrainer
,
self
)
.
__init__
(
config
)
def
run_step
(
self
):
if
self
.
_cnt
%
(
self
.
_d_period
)
==
0
:
if
self
.
global_step
%
(
self
.
_d_period
)
==
0
:
self
.
hooked_sess
.
run
(
self
.
d_min
)
if
self
.
_cnt
%
(
self
.
_g_period
)
==
0
:
if
self
.
global_step
%
(
self
.
_g_period
)
==
0
:
self
.
hooked_sess
.
run
(
self
.
g_min
)
self
.
_cnt
+=
1
class
MultiGPUGANTrainer
(
Trainer
):
...
...
@@ -121,33 +125,35 @@ class MultiGPUGANTrainer(Trainer):
A replacement of GANTrainer (optimize d and g one by one) with multi-gpu support.
"""
def
__init__
(
self
,
config
):
self
.
_nr_gpu
=
config
.
nr_tower
assert
self
.
_nr_gpu
>
1
self
.
_raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
config
.
tower
]
self
.
_input_source
=
StagingInputWrapper
(
QueueInput
(
config
.
dataflow
),
self
.
_raw_devices
)
super
(
MultiGPUGANTrainer
,
self
)
.
__init__
(
config
)
nr_gpu
=
config
.
nr_tower
assert
nr_gpu
>
1
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
config
.
tower
]
def
_setup
(
self
):
self
.
_setup_input_source
(
self
.
_input_source
)
devices
=
[
LeastLoadedDeviceSetter
(
d
,
self
.
_raw_devices
)
for
d
in
self
.
_raw_devices
]
# setup input
input
=
StagingInputWrapper
(
QueueInput
(
config
.
dataflow
),
raw_devices
)
model
=
config
.
model
cbs
=
input
.
setup
(
model
.
get_inputs_desc
())
config
.
callbacks
.
extend
(
cbs
)
def
get_cost
():
self
.
model
.
build_graph
(
self
.
_input_source
)
return
[
self
.
model
.
d_loss
,
self
.
model
.
g_loss
]
model
.
build_graph
(
input
)
return
[
model
.
d_loss
,
model
.
g_loss
]
devices
=
[
LeastLoadedDeviceSetter
(
d
,
raw_devices
)
for
d
in
raw_devices
]
cost_list
=
MultiGPUTrainerBase
.
build_on_multi_tower
(
self
.
config
.
tower
,
get_cost
,
devices
)
# simply average the cost.
might be
faster to average the gradients
d_loss
=
tf
.
add_n
([
x
[
0
]
for
x
in
cost_list
])
*
(
1.0
/
self
.
_
nr_gpu
)
g_loss
=
tf
.
add_n
([
x
[
1
]
for
x
in
cost_list
])
*
(
1.0
/
self
.
_
nr_gpu
)
config
.
tower
,
get_cost
,
devices
)
# simply average the cost.
It might get
faster to average the gradients
d_loss
=
tf
.
add_n
([
x
[
0
]
for
x
in
cost_list
])
*
(
1.0
/
nr_gpu
)
g_loss
=
tf
.
add_n
([
x
[
1
]
for
x
in
cost_list
])
*
(
1.0
/
nr_gpu
)
opt
=
self
.
model
.
get_optimizer
()
opt
=
model
.
get_optimizer
()
# run one d_min after one g_min
g_min
=
opt
.
minimize
(
g_loss
,
var_list
=
self
.
model
.
g_vars
,
g_min
=
opt
.
minimize
(
g_loss
,
var_list
=
model
.
g_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'g_op'
)
with
tf
.
control_dependencies
([
g_min
]):
d_min
=
opt
.
minimize
(
d_loss
,
var_list
=
self
.
model
.
d_vars
,
d_min
=
opt
.
minimize
(
d_loss
,
var_list
=
model
.
d_vars
,
colocate_gradients_with_ops
=
True
,
name
=
'd_op'
)
self
.
train_op
=
d_min
super
(
MultiGPUGANTrainer
,
self
)
.
__init__
(
config
)
class
RandomZData
(
DataFlow
):
...
...
tensorpack/callbacks/inference_runner.py
View file @
8419ee3f
...
...
@@ -93,13 +93,12 @@ class InferenceRunnerBase(Callback):
tower_id
=
self
.
trainer
.
config
.
predict_tower
[
0
]
device
=
'/gpu:{}'
.
format
(
tower_id
)
if
tower_id
>=
0
else
'/cpu:0'
self
.
_input_source
.
setup
(
self
.
trainer
.
model
.
get_inputs_desc
())
cbs
=
self
.
_input_source
.
setup
(
self
.
trainer
.
model
.
get_inputs_desc
())
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
self
.
_tower_handle
=
self
.
trainer
.
predictor_factory
.
build
(
self
.
_tower_name
,
device
,
self
.
_input_source
)
self
.
_hooks
=
[
self
.
_build_hook
(
inf
)
for
inf
in
self
.
infs
]
cbs
=
self
.
_input_source
.
get_callbacks
()
self
.
_hooks
.
extend
([
CallbackToHook
(
cb
)
for
cb
in
cbs
])
def
_before_train
(
self
):
...
...
@@ -173,7 +172,7 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
self
.
_gpus
=
gpus
def
_setup_graph
(
self
):
self
.
_input_source
.
setup
(
self
.
trainer
.
model
.
get_inputs_desc
())
cbs
=
self
.
_input_source
.
setup
(
self
.
trainer
.
model
.
get_inputs_desc
())
self
.
_handles
=
[]
with
tf
.
variable_scope
(
tf
.
get_variable_scope
(),
reuse
=
True
):
for
idx
,
t
in
enumerate
(
self
.
_gpus
):
...
...
@@ -186,7 +185,6 @@ class DataParallelInferenceRunner(InferenceRunnerBase):
# setup feeds and hooks
self
.
_hooks_parallel
=
[
self
.
_build_hook_parallel
(
inf
)
for
inf
in
self
.
infs
]
self
.
_hooks
=
[
self
.
_build_hook
(
inf
)
for
inf
in
self
.
infs
]
cbs
=
self
.
_input_source
.
get_callbacks
()
self
.
_hooks_parallel
.
extend
([
CallbackToHook
(
cb
)
for
cb
in
cbs
])
class
InferencerToHookDataParallel
(
InferencerToHook
):
...
...
tensorpack/graph_builder/input_source_base.py
View file @
8419ee3f
...
...
@@ -5,6 +5,7 @@
from
abc
import
ABCMeta
,
abstractmethod
import
six
from
..utils.argtools
import
memoized
from
._utils
import
get_sublist_by_names
,
get_tensors_inputs
__all__
=
[
'InputSource'
,
'remap_input_source'
]
...
...
@@ -31,16 +32,25 @@ class InputSource(object):
"""
Args:
inputs_desc (list[InputDesc]): list of input desc
Returns:
list[Callback]: extra callbacks needed by this InputSource.
"""
self
.
_setup
(
inputs_desc
)
return
self
.
get_callbacks
()
def
_setup
(
self
,
inputs_desc
):
pass
@
memoized
def
get_callbacks
(
self
):
"""
An InputSource might need some extra maintainance during training,
which is done also through the Callback interface.
This method returns the Callbacks and the return value will be memoized.
Returns:
list[Callback]: extra callbacks
requir
ed by this InputSource.
list[Callback]: extra callbacks
need
ed by this InputSource.
"""
return
self
.
_get_callbacks
()
...
...
tensorpack/graph_builder/predictor_factory.py
View file @
8419ee3f
...
...
@@ -53,6 +53,12 @@ class PredictorFactory(object):
self
.
_names_built
=
{}
def
build
(
self
,
tower_name
,
device
,
input
=
None
):
"""
Args:
tower_name (str):
device(str):
input (InputSource): must be setup already. If None, will use InputDesc from the model.
"""
logger
.
info
(
"Building predictor tower '{}' on device {} ..."
.
format
(
tower_name
,
device
))
assert
tower_name
not
in
self
.
_names_built
...
...
tensorpack/train/base.py
View file @
8419ee3f
...
...
@@ -117,8 +117,7 @@ class Trainer(object):
"""
Setup InputSource on this trainer.
"""
input_source
.
setup
(
self
.
model
.
get_inputs_desc
())
cbs
=
input_source
.
get_callbacks
()
cbs
=
input_source
.
setup
(
self
.
model
.
get_inputs_desc
())
self
.
config
.
callbacks
.
extend
(
cbs
)
def
setup
(
self
):
...
...
tensorpack/train/multigpu.py
View file @
8419ee3f
...
...
@@ -202,7 +202,7 @@ class SyncMultiGPUTrainerParameterServer(MultiGPUTrainerBase):
[Callback]: the callbacks to be added
"""
input
.
setup
(
model
.
get_inputs_desc
())
callbacks
=
input
.
setup
(
model
.
get_inputs_desc
())
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
tower
]
if
ps_device
==
'gpu'
:
...
...
@@ -226,7 +226,7 @@ class SyncMultiGPUTrainerParameterServer(MultiGPUTrainerBase):
# grads = grad_list[0]
train_op
=
model
.
get_optimizer
()
.
apply_gradients
(
grads
,
name
=
'train_op'
)
return
train_op
,
input
.
get_callbacks
()
return
train_op
,
callbacks
def
_setup
(
self
):
self
.
train_op
,
cbs
=
SyncMultiGPUTrainerParameterServer
.
setup_graph
(
...
...
@@ -294,7 +294,7 @@ class SyncMultiGPUTrainerReplicated(MultiGPUTrainerBase):
[Callback]: the callbacks to be added
"""
input
.
setup
(
model
.
get_inputs_desc
())
callbacks
=
input
.
setup
(
model
.
get_inputs_desc
())
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
tower
]
...
...
@@ -317,7 +317,7 @@ class SyncMultiGPUTrainerReplicated(MultiGPUTrainerBase):
cb
=
RunOp
(
SyncMultiGPUTrainerReplicated
.
get_post_init_ops
,
run_before
=
True
,
run_as_trigger
=
True
,
verbose
=
True
)
return
train_op
,
input
.
get_callbacks
()
+
[
cb
]
return
train_op
,
callbacks
+
[
cb
]
def
_setup
(
self
):
self
.
train_op
,
cbs
=
SyncMultiGPUTrainerReplicated
.
setup_graph
(
...
...
@@ -379,7 +379,7 @@ class AsyncMultiGPUTrainer(MultiGPUTrainerBase):
[Callback]: the callbacks to be added
"""
input
.
setup
(
model
.
get_inputs_desc
())
callbacks
=
input
.
setup
(
model
.
get_inputs_desc
())
raw_devices
=
[
'/gpu:{}'
.
format
(
k
)
for
k
in
tower
]
devices
=
[
LeastLoadedDeviceSetter
(
d
,
raw_devices
)
for
d
in
raw_devices
]
...
...
@@ -404,7 +404,7 @@ class AsyncMultiGPUTrainer(MultiGPUTrainerBase):
# will call apply_gradients (therefore gradproc) multiple times
train_ops
.
append
(
opt
.
apply_gradients
(
grad_and_vars
,
name
=
'apply_grad_{}'
.
format
(
i
)))
return
tf
.
group
(
*
train_ops
,
name
=
'train_op'
),
input
.
get_callbacks
()
return
tf
.
group
(
*
train_ops
,
name
=
'train_op'
),
callbacks
def
_setup
(
self
):
self
.
train_op
,
cbs
=
AsyncMultiGPUTrainer
.
setup_graph
(
...
...
tensorpack/train/simple.py
View file @
8419ee3f
...
...
@@ -53,8 +53,7 @@ class SimpleTrainer(Trainer):
[Callback]: the callbacks to be added
"""
input
.
setup
(
model
.
get_inputs_desc
())
cbs
=
input
.
get_callbacks
()
cbs
=
input
.
setup
(
model
.
get_inputs_desc
())
with
TowerContext
(
''
,
is_training
=
True
):
model
.
build_graph
(
input
)
_
,
grads
=
model
.
get_cost_and_grad
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment