Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
7cb2606c
Commit
7cb2606c
authored
Jul 28, 2018
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[MaskRCNN] better scope management
parent
85586fc5
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
75 additions
and
54 deletions
+75
-54
examples/FasterRCNN/basemodel.py
examples/FasterRCNN/basemodel.py
+48
-36
examples/FasterRCNN/config.py
examples/FasterRCNN/config.py
+2
-2
examples/FasterRCNN/train.py
examples/FasterRCNN/train.py
+2
-4
tensorpack/callbacks/saver.py
tensorpack/callbacks/saver.py
+1
-1
tensorpack/models/batch_norm.py
tensorpack/models/batch_norm.py
+4
-2
tensorpack/tfutils/varreplace.py
tensorpack/tfutils/varreplace.py
+14
-7
tensorpack/train/interface.py
tensorpack/train/interface.py
+4
-2
No files found.
examples/FasterRCNN/basemodel.py
View file @
7cb2606c
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# File: basemodel.py
# File: basemodel.py
from
contextlib
import
contextmanager
from
contextlib
import
contextmanager
,
ExitStack
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.contrib.framework
import
add_model_variable
from
tensorpack.tfutils
import
argscope
from
tensorpack.tfutils
import
argscope
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.tfutils.varreplace
import
custom_getter_scope
from
tensorpack.tfutils.varreplace
import
custom_getter_scope
,
freeze_variables
from
tensorpack.models
import
(
from
tensorpack.models
import
(
Conv2D
,
MaxPooling
,
BatchNorm
,
layer_register
)
Conv2D
,
MaxPooling
,
BatchNorm
,
layer_register
)
...
@@ -40,13 +42,16 @@ def GroupNorm(x, group=32, gamma_initializer=tf.constant_initializer(1.)):
...
@@ -40,13 +42,16 @@ def GroupNorm(x, group=32, gamma_initializer=tf.constant_initializer(1.)):
return
tf
.
reshape
(
out
,
orig_shape
,
name
=
'output'
)
return
tf
.
reshape
(
out
,
orig_shape
,
name
=
'output'
)
def
maybe_freeze_affine
(
getter
,
*
args
,
**
kwargs
):
def
freeze_affine_getter
(
getter
,
*
args
,
**
kwargs
):
# custom getter to freeze affine params inside bn
# custom getter to freeze affine params inside bn
name
=
args
[
0
]
if
len
(
args
)
else
kwargs
.
get
(
'name'
)
name
=
args
[
0
]
if
len
(
args
)
else
kwargs
.
get
(
'name'
)
if
name
.
endswith
(
'/gamma'
)
or
name
.
endswith
(
'/beta'
):
if
name
.
endswith
(
'/gamma'
)
or
name
.
endswith
(
'/beta'
):
if
cfg
.
BACKBONE
.
FREEZE_AFFINE
:
kwargs
[
'trainable'
]
=
False
kwargs
[
'trainable'
]
=
False
ret
=
getter
(
*
args
,
**
kwargs
)
return
getter
(
*
args
,
**
kwargs
)
add_model_variable
(
ret
)
else
:
ret
=
getter
(
*
args
,
**
kwargs
)
return
ret
def
maybe_reverse_pad
(
topleft
,
bottomright
):
def
maybe_reverse_pad
(
topleft
,
bottomright
):
...
@@ -56,26 +61,33 @@ def maybe_reverse_pad(topleft, bottomright):
...
@@ -56,26 +61,33 @@ def maybe_reverse_pad(topleft, bottomright):
@
contextmanager
@
contextmanager
def
backbone_argscope
():
def
backbone_scope
(
freeze
):
"""
Args:
freeze (bool): whether to freeze all the variables under the scope
"""
def
nonlin
(
x
):
def
nonlin
(
x
):
x
=
get_norm
()(
x
)
x
=
get_norm
()(
x
)
return
tf
.
nn
.
relu
(
x
)
return
tf
.
nn
.
relu
(
x
)
with
argscope
([
Conv2D
,
MaxPooling
,
BatchNorm
],
data_format
=
'channels_first'
),
\
with
argscope
([
Conv2D
,
MaxPooling
,
BatchNorm
],
data_format
=
'channels_first'
),
\
argscope
(
Conv2D
,
use_bias
=
False
,
activation
=
nonlin
),
\
argscope
(
Conv2D
,
use_bias
=
False
,
activation
=
nonlin
,
argscope
(
BatchNorm
,
training
=
False
),
\
kernel_initializer
=
tf
.
variance_scaling_initializer
(
custom_getter_scope
(
maybe_freeze_affine
):
scale
=
2.0
,
mode
=
'fan_out'
)),
\
yield
ExitStack
()
as
stack
:
if
cfg
.
BACKBONE
.
NORM
in
[
'FreezeBN'
,
'SyncBN'
]:
if
freeze
or
cfg
.
BACKBONE
.
NORM
==
'FreezeBN'
:
@
contextmanager
stack
.
enter_context
(
argscope
(
BatchNorm
,
training
=
False
))
def
maybe_syncbn_scope
():
else
:
if
cfg
.
BACKBONE
.
NORM
==
'SyncBN'
:
stack
.
enter_context
(
argscope
(
assert
cfg
.
BACKBONE
.
FREEZE_AT
==
2
# TODO add better support
BatchNorm
,
sync_statistics
=
'nccl'
if
cfg
.
TRAINER
==
'replicated'
else
'horovod'
))
with
argscope
(
BatchNorm
,
training
=
None
,
sync_statistics
=
'nccl'
if
cfg
.
TRAINER
==
'replicated'
else
'horovod'
):
if
freeze
:
yield
stack
.
enter_context
(
freeze_variables
(
stop_gradient
=
False
,
skip_collection
=
True
))
else
:
else
:
# the layers are not completely freezed, but we may want to only freeze the affine
if
cfg
.
BACKBONE
.
FREEZE_AFFINE
:
stack
.
enter_context
(
custom_getter_scope
(
freeze_affine_getter
))
yield
yield
...
@@ -147,36 +159,37 @@ def resnet_group(name, l, block_func, features, count, stride):
...
@@ -147,36 +159,37 @@ def resnet_group(name, l, block_func, features, count, stride):
def
resnet_c4_backbone
(
image
,
num_blocks
):
def
resnet_c4_backbone
(
image
,
num_blocks
):
assert
len
(
num_blocks
)
==
3
assert
len
(
num_blocks
)
==
3
with
backbone_argscope
():
freeze_at
=
cfg
.
BACKBONE
.
FREEZE_AT
with
backbone_scope
(
freeze
=
freeze_at
>
0
):
l
=
tf
.
pad
(
image
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
2
,
3
),
maybe_reverse_pad
(
2
,
3
)])
l
=
tf
.
pad
(
image
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
2
,
3
),
maybe_reverse_pad
(
2
,
3
)])
l
=
Conv2D
(
'conv0'
,
l
,
64
,
7
,
strides
=
2
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv0'
,
l
,
64
,
7
,
strides
=
2
,
padding
=
'VALID'
)
l
=
tf
.
pad
(
l
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
0
,
1
),
maybe_reverse_pad
(
0
,
1
)])
l
=
tf
.
pad
(
l
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
0
,
1
),
maybe_reverse_pad
(
0
,
1
)])
l
=
MaxPooling
(
'pool0'
,
l
,
3
,
strides
=
2
,
padding
=
'VALID'
)
l
=
MaxPooling
(
'pool0'
,
l
,
3
,
strides
=
2
,
padding
=
'VALID'
)
with
backbone_scope
(
freeze
=
freeze_at
>
1
):
c2
=
resnet_group
(
'group0'
,
l
,
resnet_bottleneck
,
64
,
num_blocks
[
0
],
1
)
c2
=
resnet_group
(
'group0'
,
l
,
resnet_bottleneck
,
64
,
num_blocks
[
0
],
1
)
# TODO replace var by const to enable optimization
with
backbone_scope
(
freeze
=
False
):
if
cfg
.
BACKBONE
.
FREEZE_AT
==
2
:
c3
=
resnet_group
(
'group1'
,
c2
,
resnet_bottleneck
,
128
,
num_blocks
[
1
],
2
)
c2
=
tf
.
stop_gradient
(
c2
)
c4
=
resnet_group
(
'group2'
,
c3
,
resnet_bottleneck
,
256
,
num_blocks
[
2
],
2
)
with
maybe_syncbn_scope
():
c3
=
resnet_group
(
'group1'
,
c2
,
resnet_bottleneck
,
128
,
num_blocks
[
1
],
2
)
c4
=
resnet_group
(
'group2'
,
c3
,
resnet_bottleneck
,
256
,
num_blocks
[
2
],
2
)
# 16x downsampling up to now
# 16x downsampling up to now
return
c4
return
c4
@
auto_reuse_variable_scope
@
auto_reuse_variable_scope
def
resnet_conv5
(
image
,
num_block
):
def
resnet_conv5
(
image
,
num_block
):
with
backbone_
argscope
(),
maybe_syncbn_scope
(
):
with
backbone_
scope
(
freeze
=
False
):
l
=
resnet_group
(
'group3'
,
image
,
resnet_bottleneck
,
512
,
num_block
,
2
)
l
=
resnet_group
(
'group3'
,
image
,
resnet_bottleneck
,
512
,
num_block
,
2
)
return
l
return
l
def
resnet_fpn_backbone
(
image
,
num_blocks
):
def
resnet_fpn_backbone
(
image
,
num_blocks
):
freeze_at
=
cfg
.
BACKBONE
.
FREEZE_AT
shape2d
=
tf
.
shape
(
image
)[
2
:]
shape2d
=
tf
.
shape
(
image
)[
2
:]
mult
=
float
(
cfg
.
FPN
.
RESOLUTION_REQUIREMENT
)
mult
=
float
(
cfg
.
FPN
.
RESOLUTION_REQUIREMENT
)
new_shape2d
=
tf
.
to_int32
(
tf
.
ceil
(
tf
.
to_float
(
shape2d
)
/
mult
)
*
mult
)
new_shape2d
=
tf
.
to_int32
(
tf
.
ceil
(
tf
.
to_float
(
shape2d
)
/
mult
)
*
mult
)
pad_shape2d
=
new_shape2d
-
shape2d
pad_shape2d
=
new_shape2d
-
shape2d
assert
len
(
num_blocks
)
==
4
,
num_blocks
assert
len
(
num_blocks
)
==
4
,
num_blocks
with
backbone_
argscope
(
):
with
backbone_
scope
(
freeze
=
freeze_at
>
0
):
chan
=
image
.
shape
[
1
]
chan
=
image
.
shape
[
1
]
pad_base
=
maybe_reverse_pad
(
2
,
3
)
pad_base
=
maybe_reverse_pad
(
2
,
3
)
l
=
tf
.
pad
(
image
,
tf
.
stack
(
l
=
tf
.
pad
(
image
,
tf
.
stack
(
...
@@ -187,13 +200,12 @@ def resnet_fpn_backbone(image, num_blocks):
...
@@ -187,13 +200,12 @@ def resnet_fpn_backbone(image, num_blocks):
l
=
Conv2D
(
'conv0'
,
l
,
64
,
7
,
strides
=
2
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv0'
,
l
,
64
,
7
,
strides
=
2
,
padding
=
'VALID'
)
l
=
tf
.
pad
(
l
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
0
,
1
),
maybe_reverse_pad
(
0
,
1
)])
l
=
tf
.
pad
(
l
,
[[
0
,
0
],
[
0
,
0
],
maybe_reverse_pad
(
0
,
1
),
maybe_reverse_pad
(
0
,
1
)])
l
=
MaxPooling
(
'pool0'
,
l
,
3
,
strides
=
2
,
padding
=
'VALID'
)
l
=
MaxPooling
(
'pool0'
,
l
,
3
,
strides
=
2
,
padding
=
'VALID'
)
with
backbone_scope
(
freeze
=
freeze_at
>
1
):
c2
=
resnet_group
(
'group0'
,
l
,
resnet_bottleneck
,
64
,
num_blocks
[
0
],
1
)
c2
=
resnet_group
(
'group0'
,
l
,
resnet_bottleneck
,
64
,
num_blocks
[
0
],
1
)
if
cfg
.
BACKBONE
.
FREEZE_AT
==
2
:
with
backbone_scope
(
freeze
=
False
):
c2
=
tf
.
stop_gradient
(
c2
)
c3
=
resnet_group
(
'group1'
,
c2
,
resnet_bottleneck
,
128
,
num_blocks
[
1
],
2
)
with
maybe_syncbn_scope
():
c4
=
resnet_group
(
'group2'
,
c3
,
resnet_bottleneck
,
256
,
num_blocks
[
2
],
2
)
c3
=
resnet_group
(
'group1'
,
c2
,
resnet_bottleneck
,
128
,
num_blocks
[
1
],
2
)
c5
=
resnet_group
(
'group3'
,
c4
,
resnet_bottleneck
,
512
,
num_blocks
[
3
],
2
)
c4
=
resnet_group
(
'group2'
,
c3
,
resnet_bottleneck
,
256
,
num_blocks
[
2
],
2
)
c5
=
resnet_group
(
'group3'
,
c4
,
resnet_bottleneck
,
512
,
num_blocks
[
3
],
2
)
# 32x downsampling up to now
# 32x downsampling up to now
# size of c5: ceil(input/32)
# size of c5: ceil(input/32)
return
c2
,
c3
,
c4
,
c5
return
c2
,
c3
,
c4
,
c5
examples/FasterRCNN/config.py
View file @
7cb2606c
...
@@ -72,7 +72,7 @@ _C.BACKBONE.RESNET_NUM_BLOCK = [3, 4, 6, 3] # for resnet50
...
@@ -72,7 +72,7 @@ _C.BACKBONE.RESNET_NUM_BLOCK = [3, 4, 6, 3] # for resnet50
# RESNET_NUM_BLOCK = [3, 4, 23, 3] # for resnet101
# RESNET_NUM_BLOCK = [3, 4, 23, 3] # for resnet101
_C
.
BACKBONE
.
FREEZE_AFFINE
=
False
# do not train affine parameters inside norm layers
_C
.
BACKBONE
.
FREEZE_AFFINE
=
False
# do not train affine parameters inside norm layers
_C
.
BACKBONE
.
NORM
=
'FreezeBN'
# options: FreezeBN, SyncBN, GN
_C
.
BACKBONE
.
NORM
=
'FreezeBN'
# options: FreezeBN, SyncBN, GN
_C
.
BACKBONE
.
FREEZE_AT
=
2
# options: 0, 2
_C
.
BACKBONE
.
FREEZE_AT
=
2
# options: 0,
1,
2
# Use a base model with TF-preferred padding mode,
# Use a base model with TF-preferred padding mode,
# which may pad more pixels on right/bottom than top/left.
# which may pad more pixels on right/bottom than top/left.
...
@@ -169,7 +169,7 @@ def finalize_configs(is_training):
...
@@ -169,7 +169,7 @@ def finalize_configs(is_training):
assert
_C
.
BACKBONE
.
NORM
in
[
'FreezeBN'
,
'SyncBN'
,
'GN'
],
_C
.
BACKBONE
.
NORM
assert
_C
.
BACKBONE
.
NORM
in
[
'FreezeBN'
,
'SyncBN'
,
'GN'
],
_C
.
BACKBONE
.
NORM
if
_C
.
BACKBONE
.
NORM
!=
'FreezeBN'
:
if
_C
.
BACKBONE
.
NORM
!=
'FreezeBN'
:
assert
not
_C
.
BACKBONE
.
FREEZE_AFFINE
assert
not
_C
.
BACKBONE
.
FREEZE_AFFINE
assert
_C
.
BACKBONE
.
FREEZE_AT
in
[
0
,
2
]
assert
_C
.
BACKBONE
.
FREEZE_AT
in
[
0
,
1
,
2
]
_C
.
RPN
.
NUM_ANCHOR
=
len
(
_C
.
RPN
.
ANCHOR_SIZES
)
*
len
(
_C
.
RPN
.
ANCHOR_RATIOS
)
_C
.
RPN
.
NUM_ANCHOR
=
len
(
_C
.
RPN
.
ANCHOR_SIZES
)
*
len
(
_C
.
RPN
.
ANCHOR_RATIOS
)
assert
len
(
_C
.
FPN
.
ANCHOR_STRIDES
)
==
len
(
_C
.
RPN
.
ANCHOR_SIZES
)
assert
len
(
_C
.
FPN
.
ANCHOR_STRIDES
)
==
len
(
_C
.
RPN
.
ANCHOR_SIZES
)
...
...
examples/FasterRCNN/train.py
View file @
7cb2606c
...
@@ -234,8 +234,7 @@ class ResNetC4Model(DetectionModel):
...
@@ -234,8 +234,7 @@ class ResNetC4Model(DetectionModel):
mrcnn_loss
=
0.0
mrcnn_loss
=
0.0
wd_cost
=
regularize_cost
(
wd_cost
=
regularize_cost
(
'(?:group1|group2|group3|rpn|fastrcnn|maskrcnn)/.*W'
,
'.*/W'
,
l2_regularizer
(
cfg
.
TRAIN
.
WEIGHT_DECAY
),
name
=
'wd_cost'
)
l2_regularizer
(
cfg
.
TRAIN
.
WEIGHT_DECAY
),
name
=
'wd_cost'
)
total_cost
=
tf
.
add_n
([
total_cost
=
tf
.
add_n
([
rpn_label_loss
,
rpn_box_loss
,
rpn_label_loss
,
rpn_box_loss
,
...
@@ -372,8 +371,7 @@ class ResNetFPNModel(DetectionModel):
...
@@ -372,8 +371,7 @@ class ResNetFPNModel(DetectionModel):
mrcnn_loss
=
0.0
mrcnn_loss
=
0.0
wd_cost
=
regularize_cost
(
wd_cost
=
regularize_cost
(
'(?:group1|group2|group3|rpn|fpn|fastrcnn|maskrcnn)/.*W'
,
'.*/W'
,
l2_regularizer
(
cfg
.
TRAIN
.
WEIGHT_DECAY
),
name
=
'wd_cost'
)
l2_regularizer
(
cfg
.
TRAIN
.
WEIGHT_DECAY
),
name
=
'wd_cost'
)
total_cost
=
tf
.
add_n
([
rpn_label_loss
,
rpn_box_loss
,
total_cost
=
tf
.
add_n
([
rpn_label_loss
,
rpn_box_loss
,
fastrcnn_label_loss
,
fastrcnn_box_loss
,
fastrcnn_label_loss
,
fastrcnn_box_loss
,
...
...
tensorpack/callbacks/saver.py
View file @
7cb2606c
...
@@ -20,7 +20,7 @@ class ModelSaver(Callback):
...
@@ -20,7 +20,7 @@ class ModelSaver(Callback):
def
__init__
(
self
,
max_to_keep
=
10
,
def
__init__
(
self
,
max_to_keep
=
10
,
keep_checkpoint_every_n_hours
=
0.5
,
keep_checkpoint_every_n_hours
=
0.5
,
checkpoint_dir
=
None
,
checkpoint_dir
=
None
,
var_collections
=
[
tf
.
GraphKeys
.
GLOBAL_VARIABLES
,
tf
.
GraphKeys
.
MODEL_VARIABLES
]):
var_collections
=
[
tf
.
GraphKeys
.
GLOBAL_VARIABLES
]):
"""
"""
Args:
Args:
max_to_keep (int): the same as in ``tf.train.Saver``.
max_to_keep (int): the same as in ``tf.train.Saver``.
...
...
tensorpack/models/batch_norm.py
View file @
7cb2606c
...
@@ -189,7 +189,8 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
...
@@ -189,7 +189,8 @@ def BatchNorm(inputs, axis=None, training=None, momentum=0.9, epsilon=1e-5,
# because during training, EMA isn't used
# because during training, EMA isn't used
if
ctx
.
is_main_training_tower
:
if
ctx
.
is_main_training_tower
:
for
v
in
layer
.
non_trainable_variables
:
for
v
in
layer
.
non_trainable_variables
:
add_model_variable
(
v
)
if
isinstance
(
v
,
tf
.
Variable
):
add_model_variable
(
v
)
if
not
ctx
.
is_main_training_tower
or
internal_update
:
if
not
ctx
.
is_main_training_tower
or
internal_update
:
restore_collection
(
coll_bk
)
restore_collection
(
coll_bk
)
...
@@ -351,7 +352,8 @@ def BatchRenorm(x, rmax, dmax, momentum=0.9, epsilon=1e-5,
...
@@ -351,7 +352,8 @@ def BatchRenorm(x, rmax, dmax, momentum=0.9, epsilon=1e-5,
if
ctx
.
is_main_training_tower
:
if
ctx
.
is_main_training_tower
:
for
v
in
layer
.
non_trainable_variables
:
for
v
in
layer
.
non_trainable_variables
:
add_model_variable
(
v
)
if
isinstance
(
v
,
tf
.
Variable
):
add_model_variable
(
v
)
else
:
else
:
# only run UPDATE_OPS in the first tower
# only run UPDATE_OPS in the first tower
restore_collection
(
coll_bk
)
restore_collection
(
coll_bk
)
...
...
tensorpack/tfutils/varreplace.py
View file @
7cb2606c
...
@@ -3,11 +3,12 @@
...
@@ -3,11 +3,12 @@
# Credit: Qinyao He
# Credit: Qinyao He
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.contrib.framework
import
add_model_variable
from
contextlib
import
contextmanager
from
contextlib
import
contextmanager
from
.common
import
get_tf_version_tuple
from
.common
import
get_tf_version_tuple
__all__
=
[
'freeze_variables'
,
'remap_variables'
]
__all__
=
[
'
custom_getter_scope'
,
'
freeze_variables'
,
'remap_variables'
]
@
contextmanager
@
contextmanager
...
@@ -65,19 +66,25 @@ def freeze_variables(stop_gradient=True, skip_collection=False):
...
@@ -65,19 +66,25 @@ def freeze_variables(stop_gradient=True, skip_collection=False):
Args:
Args:
stop_gradient (bool): if True, variables returned from `get_variable`
stop_gradient (bool): if True, variables returned from `get_variable`
will be wrapped with `tf.stop_gradient` and therefore has no
will be wrapped with `tf.stop_gradient` and therefore has no
gradient when used later. Note that the created variables may
gradient when used later.
still have gradient when accessed by other approaches (e.g.
Note that the created variables may still have gradient when accessed
by name, or by collection).
by other approaches (e.g. by name, or by collection).
Also note that this makes `tf.get_variable` returns a Tensor instead of a Variable,
which may break existing code.
Therefore, it's recommended to use the `skip_collection` option instead.
skip_collection (bool): if True, do not add the variable to
skip_collection (bool): if True, do not add the variable to
``TRAINABLE_VARIABLES`` collection
. As a result they will not be
``TRAINABLE_VARIABLES`` collection
, but to ``MODEL_VARIABLES``
trained by default.
collection. As a result they will not be
trained by default.
"""
"""
def
custom_getter
(
getter
,
*
args
,
**
kwargs
):
def
custom_getter
(
getter
,
*
args
,
**
kwargs
):
trainable
=
kwargs
.
get
(
'trainable'
,
True
)
trainable
=
kwargs
.
get
(
'trainable'
,
True
)
name
=
args
[
0
]
if
len
(
args
)
else
kwargs
.
get
(
'name'
)
if
skip_collection
:
if
skip_collection
:
kwargs
[
'trainable'
]
=
False
kwargs
[
'trainable'
]
=
False
v
=
getter
(
*
args
,
**
kwargs
)
v
=
getter
(
*
args
,
**
kwargs
)
if
skip_collection
:
add_model_variable
(
v
)
if
trainable
and
stop_gradient
:
if
trainable
and
stop_gradient
:
v
=
tf
.
stop_gradient
(
v
)
v
=
tf
.
stop_gradient
(
v
,
name
=
'freezed_'
+
name
)
return
v
return
v
return
custom_getter_scope
(
custom_getter
)
return
custom_getter_scope
(
custom_getter
)
tensorpack/train/interface.py
View file @
7cb2606c
...
@@ -4,7 +4,8 @@
...
@@ -4,7 +4,8 @@
import
tensorflow
as
tf
import
tensorflow
as
tf
from
..input_source
import
(
from
..input_source
import
(
InputSource
,
FeedInput
,
QueueInput
,
StagingInput
,
DummyConstantInput
)
InputSource
,
FeedInput
,
FeedfreeInput
,
QueueInput
,
StagingInput
,
DummyConstantInput
)
from
..utils
import
logger
from
..utils
import
logger
from
.config
import
TrainConfig
from
.config
import
TrainConfig
...
@@ -40,7 +41,8 @@ def apply_default_prefetch(input_source_or_dataflow, trainer):
...
@@ -40,7 +41,8 @@ def apply_default_prefetch(input_source_or_dataflow, trainer):
# seem to only improve on >1 GPUs
# seem to only improve on >1 GPUs
assert
not
isinstance
(
trainer
,
SimpleTrainer
)
assert
not
isinstance
(
trainer
,
SimpleTrainer
)
if
not
isinstance
(
input
,
(
StagingInput
,
DummyConstantInput
)):
if
isinstance
(
input
,
FeedfreeInput
)
and
\
not
isinstance
(
input
,
(
StagingInput
,
DummyConstantInput
)):
logger
.
info
(
"Automatically applying StagingInput on the DataFlow."
)
logger
.
info
(
"Automatically applying StagingInput on the DataFlow."
)
input
=
StagingInput
(
input
)
input
=
StagingInput
(
input
)
return
input
return
input
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment