Commit 7c1c9877 authored by Yuxin Wu's avatar Yuxin Wu

re-benchmark Mask R-CNN

parent 2014358c
......@@ -60,19 +60,16 @@ Training throughput (larger is better) of standard R50-FPN Mask R-CNN, on 8 V100
| Implementation | Throughput (img/s) |
|--------------------------------------------------------------------------------------------------------------------------------------------------|:------------------:|
| [torchvision](https://pytorch.org/blog/torchvision03/#segmentation-models) | 59 |
| [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md#end-to-end-faster-and-mask-r-cnn-baselines) | 51 |
| tensorpack | 50 |
| [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md#end-to-end-faster-and-mask-r-cnn-baselines) | 35 |
| [mmdetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/MODEL_ZOO.md#mask-r-cnn) | 35 |
| [mmdetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/MODEL_ZOO.md#mask-r-cnn) | 41 |
| [Detectron](https://github.com/facebookresearch/Detectron) | 19 |
| [matterport/Mask_RCNN](https://github.com/matterport/Mask_RCNN/) | 11 |
| [matterport/Mask_RCNN](https://github.com/matterport/Mask_RCNN/) | 14 |
1. This implementation does not use specialized CUDA ops (e.g. ROIAlign),
1. This implementation does not use specialized CUDA ops (e.g. ROIAlign),
and does not use batch of images.
Therefore it might be slower than other highly-optimized implementations.
Our number in the table above uses CUDA kernel of NMS (available only in TF
master with [PR30893](https://github.com/tensorflow/tensorflow/pull/30893)),
and `TRAINER=horovod`.
Our number in the table above uses TF 1.15.0rc2 and `TRAINER=horovod`.
1. If CuDNN warmup is on, the training will start very slowly, until about
10k steps (or more if scale augmentation is used) to reach a maximum speed.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment