Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
740e9d8c
Commit
740e9d8c
authored
Nov 06, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Incompatible] refactor inferencer. ClassificationError now takes a vector
parent
148d7dd9
Changes
17
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
64 additions
and
60 deletions
+64
-60
README.md
README.md
+2
-2
examples/DisturbLabel/mnist-disturb.py
examples/DisturbLabel/mnist-disturb.py
+0
-1
examples/DoReFa-Net/alexnet-dorefa.py
examples/DoReFa-Net/alexnet-dorefa.py
+2
-4
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+0
-1
examples/Inception/inception-bn.py
examples/Inception/inception-bn.py
+2
-4
examples/Inception/inceptionv3.py
examples/Inception/inceptionv3.py
+2
-4
examples/ResNet/cifar10-resnet.py
examples/ResNet/cifar10-resnet.py
+0
-1
examples/ResNet/imagenet-resnet.py
examples/ResNet/imagenet-resnet.py
+2
-4
examples/SpatialTransformer/mnist-addition.py
examples/SpatialTransformer/mnist-addition.py
+0
-1
examples/cifar-convnet.py
examples/cifar-convnet.py
+0
-2
examples/mnist-convnet.py
examples/mnist-convnet.py
+3
-4
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+0
-1
tensorpack/callbacks/inference.py
tensorpack/callbacks/inference.py
+40
-26
tensorpack/tfutils/symbolic_functions.py
tensorpack/tfutils/symbolic_functions.py
+3
-2
tensorpack/train/multigpu.py
tensorpack/train/multigpu.py
+2
-2
tensorpack/train/trainer.py
tensorpack/train/trainer.py
+0
-1
tensorpack/utils/utils.py
tensorpack/utils/utils.py
+6
-0
No files found.
README.md
View file @
740e9d8c
...
@@ -29,7 +29,7 @@ Describe your training task with three components:
...
@@ -29,7 +29,7 @@ Describe your training task with three components:
+ Use Python to easily handle any of your own data format, yet still keep a good training speed thanks to multiprocess prefetch & TF Queue prefetch.
+ Use Python to easily handle any of your own data format, yet still keep a good training speed thanks to multiprocess prefetch & TF Queue prefetch.
For example, InceptionV3 can run in the same speed as the official code which reads data using TF operators.
For example, InceptionV3 can run in the same speed as the official code which reads data using TF operators.
3.
Callbacks, including everything you want to do apart from the training iterations
. S
uch as:
3.
Callbacks, including everything you want to do apart from the training iterations
, s
uch as:
+
Change hyperparameters during training
+
Change hyperparameters during training
+
Print some variables of interest
+
Print some variables of interest
+
Run inference on a test dataset
+
Run inference on a test dataset
...
@@ -49,7 +49,7 @@ Multi-GPU training is off-the-shelf by simply switching the trainer.
...
@@ -49,7 +49,7 @@ Multi-GPU training is off-the-shelf by simply switching the trainer.
pip install --user -r requirements.txt
pip install --user -r requirements.txt
pip install --user -r opt-requirements.txt (some optional dependencies, you can install later if needed)
pip install --user -r opt-requirements.txt (some optional dependencies, you can install later if needed)
```
```
+
Use
[
tcmalloc
](
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
)
whenever possible
+
[
tcmalloc
](
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
)
usually helps.
+
Enable
`import tensorpack`
:
+
Enable
`import tensorpack`
:
```
```
export PYTHONPATH=$PYTHONPATH:`readlink -f path/to/tensorpack`
export PYTHONPATH=$PYTHONPATH:`readlink -f path/to/tensorpack`
...
...
examples/DisturbLabel/mnist-disturb.py
View file @
740e9d8c
...
@@ -40,7 +40,6 @@ class Model(mnist_example.Model):
...
@@ -40,7 +40,6 @@ class Model(mnist_example.Model):
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
...
...
examples/DoReFa-Net/alexnet-dorefa.py
View file @
740e9d8c
...
@@ -142,11 +142,9 @@ class Model(ModelDesc):
...
@@ -142,11 +142,9 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top1'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
wrong
=
prediction_incorrect
(
logits
,
label
,
5
)
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top5'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
# weight decay on all W of fc layers
# weight decay on all W of fc layers
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
740e9d8c
...
@@ -109,7 +109,6 @@ class Model(ModelDesc):
...
@@ -109,7 +109,6 @@ class Model(ModelDesc):
# compute the number of failed samples
# compute the number of failed samples
wrong
=
prediction_incorrect
(
logits
,
label
)
wrong
=
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
# monitor training error
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
examples/Inception/inception-bn.py
View file @
740e9d8c
...
@@ -102,12 +102,10 @@ class Model(ModelDesc):
...
@@ -102,12 +102,10 @@ class Model(ModelDesc):
cost
=
tf
.
add_n
([
loss3
,
0.3
*
loss2
,
0.3
*
loss1
],
name
=
'weighted_cost'
)
cost
=
tf
.
add_n
([
loss3
,
0.3
*
loss2
,
0.3
*
loss1
],
name
=
'weighted_cost'
)
add_moving_summary
([
cost
,
loss1
,
loss2
,
loss3
])
add_moving_summary
([
cost
,
loss1
,
loss2
,
loss3
])
wrong
=
prediction_incorrect
(
logits
,
label
,
1
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top1'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error_top1'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error_top1'
))
wrong
=
prediction_incorrect
(
logits
,
label
,
5
)
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top5'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error_top5'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error_top5'
))
# weight decay on all W of fc layers
# weight decay on all W of fc layers
...
...
examples/Inception/inceptionv3.py
View file @
740e9d8c
...
@@ -180,12 +180,10 @@ class Model(ModelDesc):
...
@@ -180,12 +180,10 @@ class Model(ModelDesc):
loss2
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
loss2
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
loss2
=
tf
.
reduce_mean
(
loss2
,
name
=
'loss2'
)
loss2
=
tf
.
reduce_mean
(
loss2
,
name
=
'loss2'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top1'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
wrong
=
prediction_incorrect
(
logits
,
label
,
5
)
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top5'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
# weight decay on all W of fc layers
# weight decay on all W of fc layers
...
...
examples/ResNet/cifar10-resnet.py
View file @
740e9d8c
...
@@ -101,7 +101,6 @@ class Model(ModelDesc):
...
@@ -101,7 +101,6 @@ class Model(ModelDesc):
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
prediction_incorrect
(
logits
,
label
)
wrong
=
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
# monitor training error
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
examples/ResNet/imagenet-resnet.py
View file @
740e9d8c
...
@@ -110,12 +110,10 @@ class Model(ModelDesc):
...
@@ -110,12 +110,10 @@ class Model(ModelDesc):
loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
loss
=
tf
.
reduce_mean
(
loss
,
name
=
'xentropy-loss'
)
loss
=
tf
.
reduce_mean
(
loss
,
name
=
'xentropy-loss'
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
)
wrong
=
prediction_incorrect
(
logits
,
label
,
1
,
name
=
'wrong-top1'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top1'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top1'
))
wrong
=
prediction_incorrect
(
logits
,
label
,
5
)
wrong
=
prediction_incorrect
(
logits
,
label
,
5
,
name
=
'wrong-top5'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong-top5'
)
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train-error-top5'
))
# weight decay on all W of fc layers
# weight decay on all W of fc layers
...
...
examples/SpatialTransformer/mnist-addition.py
View file @
740e9d8c
...
@@ -76,7 +76,6 @@ class Model(ModelDesc):
...
@@ -76,7 +76,6 @@ class Model(ModelDesc):
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
summary
.
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
summary
.
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
wd_cost
=
tf
.
mul
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
wd_cost
=
tf
.
mul
(
1e-5
,
regularize_cost
(
'fc.*/W'
,
tf
.
nn
.
l2_loss
),
...
...
examples/cifar-convnet.py
View file @
740e9d8c
...
@@ -59,9 +59,7 @@ class Model(ModelDesc):
...
@@ -59,9 +59,7 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# compute the number of failed samples, for ClassificationError to use at test time
wrong
=
symbf
.
prediction_incorrect
(
logits
,
label
)
wrong
=
symbf
.
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
# monitor training error
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
examples/mnist-convnet.py
View file @
740e9d8c
...
@@ -62,9 +62,8 @@ class Model(ModelDesc):
...
@@ -62,9 +62,8 @@ class Model(ModelDesc):
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
# a vector of length B with loss of each sample
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
,
label
)
# a vector of length B with loss of each sample
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
# compute the number of failed samples, for thee callback ClassificationError to use at test time
# compute the "incorrect vector", for the callback ClassificationError to use at validation time
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
,
name
=
'incorrect'
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
# This will monitor training error (in a moving_average fashion):
# This will monitor training error (in a moving_average fashion):
# 1. write the value to tensosrboard
# 1. write the value to tensosrboard
...
@@ -117,7 +116,7 @@ def get_config():
...
@@ -117,7 +116,7 @@ def get_config():
InferenceRunner
(
# run inference(for validation) after every epoch
InferenceRunner
(
# run inference(for validation) after every epoch
dataset_test
,
# the DataFlow instance used for validation
dataset_test
,
# the DataFlow instance used for validation
# Calculate both the cost and the error for this DataFlow
# Calculate both the cost and the error for this DataFlow
[
ScalarStats
(
'cost'
),
ClassificationError
(
)
]),
[
ScalarStats
(
'cost'
),
ClassificationError
(
'incorrect'
)
]),
]),
]),
model
=
Model
(),
model
=
Model
(),
step_per_epoch
=
step_per_epoch
,
step_per_epoch
=
step_per_epoch
,
...
...
examples/svhn-digit-convnet.py
View file @
740e9d8c
...
@@ -46,7 +46,6 @@ class Model(ModelDesc):
...
@@ -46,7 +46,6 @@ class Model(ModelDesc):
# compute the number of failed samples, for ClassificationError to use at test time
# compute the number of failed samples, for ClassificationError to use at test time
wrong
=
prediction_incorrect
(
logits
,
label
)
wrong
=
prediction_incorrect
(
logits
,
label
)
nr_wrong
=
tf
.
reduce_sum
(
wrong
,
name
=
'wrong'
)
# monitor training error
# monitor training error
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
add_moving_summary
(
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
))
...
...
tensorpack/callbacks/inference.py
View file @
740e9d8c
...
@@ -11,10 +11,11 @@ import six
...
@@ -11,10 +11,11 @@ import six
from
six.moves
import
zip
,
map
from
six.moves
import
zip
,
map
from
..dataflow
import
DataFlow
from
..dataflow
import
DataFlow
from
..utils
import
get_tqdm_kwargs
,
logger
from
..utils
import
get_tqdm_kwargs
,
logger
,
execute_only_once
from
..utils.stat
import
RatioCounter
,
BinaryStatistics
from
..utils.stat
import
RatioCounter
,
BinaryStatistics
from
..tfutils
import
get_op_tensor_name
,
get_op_var_name
from
..tfutils
import
get_op_tensor_name
,
get_op_var_name
from
.base
import
Callback
from
.base
import
Callback
from
.dispatcher
import
OutputTensorDispatcer
__all__
=
[
'InferenceRunner'
,
'ClassificationError'
,
__all__
=
[
'InferenceRunner'
,
'ClassificationError'
,
'ScalarStats'
,
'Inferencer'
,
'BinaryClassificationStats'
]
'ScalarStats'
,
'Inferencer'
,
'BinaryClassificationStats'
]
...
@@ -31,14 +32,14 @@ class Inferencer(object):
...
@@ -31,14 +32,14 @@ class Inferencer(object):
def
_before_inference
(
self
):
def
_before_inference
(
self
):
pass
pass
def
datapoint
(
self
,
dp
,
output
):
def
datapoint
(
self
,
_
,
output
):
"""
"""
Called after complete running every data point
Called after complete running every data point
"""
"""
self
.
_datapoint
(
dp
,
output
)
self
.
_datapoint
(
_
,
output
)
@
abstractmethod
@
abstractmethod
def
_datapoint
(
self
,
dp
,
output
):
def
_datapoint
(
self
,
_
,
output
):
pass
pass
def
after_inference
(
self
):
def
after_inference
(
self
):
...
@@ -97,21 +98,24 @@ class InferenceRunner(Callback):
...
@@ -97,21 +98,24 @@ class InferenceRunner(Callback):
self
.
input_tensors
=
[
x
.
name
for
x
in
input_vars
]
self
.
input_tensors
=
[
x
.
name
for
x
in
input_vars
]
def
_find_output_tensors
(
self
):
def
_find_output_tensors
(
self
):
dispatcer
=
OutputTensorDispatcer
()
for
inf
in
self
.
infs
:
dispatcer
.
add_entry
(
inf
.
get_output_tensors
())
all_names
=
dispatcer
.
get_all_names
()
IOTensor
=
InferenceRunner
.
IOTensor
IOTensor
=
InferenceRunner
.
IOTensor
self
.
output_tensors
=
[]
self
.
output_tensors
=
list
(
filter
(
def
find_oid
(
t
):
lambda
x
:
x
not
in
self
.
input_tensors
,
all_names
))
tensorname
=
get_op_tensor_name
(
t
)[
1
]
def
find_oid
(
idxs
):
if
tensorname
in
self
.
input_tensors
:
ret
=
[]
# this inferencer needs the input dp
for
idx
in
idxs
:
return
IOTensor
(
self
.
input_tensors
.
index
(
tensorname
),
False
)
name
=
all_names
[
idx
]
if
t
in
self
.
output_tensors
:
if
name
in
self
.
input_tensors
:
return
IOTensor
(
self
.
output_tensors
.
index
(
t
),
True
)
ret
.
append
(
IOTensor
(
self
.
input_tensors
.
index
(
name
),
False
))
else
:
else
:
self
.
output_tensors
.
append
(
t
)
ret
.
append
(
IOTensor
(
self
.
output_tensors
.
index
(
name
),
True
))
return
IOTensor
(
len
(
self
.
output_tensors
)
-
1
,
True
)
return
ret
self
.
inf_to_tensors
=
[
self
.
inf_to_tensors
=
[
find_oid
(
t
)
for
t
in
dispatcer
.
get_idx_for_each_entry
()]
[
find_oid
(
t
)
for
t
in
inf
.
get_output_tensors
()]
for
inf
in
self
.
infs
]
# list of list of (var_name: IOTensor)
# list of list of (var_name: IOTensor)
def
_trigger_epoch
(
self
):
def
_trigger_epoch
(
self
):
...
@@ -162,7 +166,7 @@ class ScalarStats(Inferencer):
...
@@ -162,7 +166,7 @@ class ScalarStats(Inferencer):
def
_before_inference
(
self
):
def
_before_inference
(
self
):
self
.
stats
=
[]
self
.
stats
=
[]
def
_datapoint
(
self
,
dp
,
output
):
def
_datapoint
(
self
,
_
,
output
):
self
.
stats
.
append
(
output
)
self
.
stats
.
append
(
output
)
def
_after_inference
(
self
):
def
_after_inference
(
self
):
...
@@ -180,15 +184,16 @@ class ClassificationError(Inferencer):
...
@@ -180,15 +184,16 @@ class ClassificationError(Inferencer):
"""
"""
Compute classification error in batch mode, from a `wrong` variable
Compute classification error in batch mode, from a `wrong` variable
The `wrong` variable is supposed to be an integer equal to the number of failed samples in this batch.
The `wrong` tensor is supposed to be an 0/1 integer vector containing
You can use `tf.nn.in_top_k` to record top-k error as well.
whether each sample in the batch is incorrectly classified.
You can use `tf.nn.in_top_k` to produce this vector record top-k error as well.
This callback produce the "true" error,
This callback produce the "true" error,
taking account of the fact that batches might not have the same size in
taking account of the fact that batches might not have the same size in
testing (because the size of test set might not be a multiple of batch size).
testing (because the size of test set might not be a multiple of batch size).
Therefore the result is different from averaging the error rate of each batch.
Therefore the result is different from averaging the error rate of each batch.
"""
"""
def
__init__
(
self
,
wrong_var_name
=
'
wrong:0
'
,
summary_name
=
'val_error'
):
def
__init__
(
self
,
wrong_var_name
=
'
incorrect_vector
'
,
summary_name
=
'val_error'
):
"""
"""
:param wrong_var_name: name of the `wrong` variable
:param wrong_var_name: name of the `wrong` variable
:param summary_name: the name for logging
:param summary_name: the name for logging
...
@@ -202,9 +207,18 @@ class ClassificationError(Inferencer):
...
@@ -202,9 +207,18 @@ class ClassificationError(Inferencer):
def
_before_inference
(
self
):
def
_before_inference
(
self
):
self
.
err_stat
=
RatioCounter
()
self
.
err_stat
=
RatioCounter
()
def
_datapoint
(
self
,
dp
,
outputs
):
def
_datapoint
(
self
,
_
,
outputs
):
batch_size
=
dp
[
0
]
.
shape
[
0
]
# assume batched input
vec
=
outputs
[
0
]
wrong
=
int
(
outputs
[
0
])
if
vec
.
ndim
==
0
:
if
execute_only_once
():
logger
.
warn
(
"[DEPRECATED] use a 'wrong vector' for ClassificationError instead of nr_wrong"
)
batch_size
=
_
[
0
]
.
shape
[
0
]
# assume batched input
wrong
=
int
(
vec
)
else
:
# TODO put shape assertion into inferencerrunner
assert
vec
.
ndim
==
1
,
"{} is not a vector!"
.
format
(
self
.
wrong_var_name
)
batch_size
=
len
(
vec
)
wrong
=
np
.
sum
(
vec
)
self
.
err_stat
.
feed
(
wrong
,
batch_size
)
self
.
err_stat
.
feed
(
wrong
,
batch_size
)
def
_after_inference
(
self
):
def
_after_inference
(
self
):
...
@@ -230,7 +244,7 @@ class BinaryClassificationStats(Inferencer):
...
@@ -230,7 +244,7 @@ class BinaryClassificationStats(Inferencer):
def
_before_inference
(
self
):
def
_before_inference
(
self
):
self
.
stat
=
BinaryStatistics
()
self
.
stat
=
BinaryStatistics
()
def
_datapoint
(
self
,
dp
,
outputs
):
def
_datapoint
(
self
,
_
,
outputs
):
pred
,
label
=
outputs
pred
,
label
=
outputs
self
.
stat
.
feed
(
pred
,
label
)
self
.
stat
.
feed
(
pred
,
label
)
...
...
tensorpack/tfutils/symbolic_functions.py
View file @
740e9d8c
...
@@ -6,13 +6,14 @@ import tensorflow as tf
...
@@ -6,13 +6,14 @@ import tensorflow as tf
import
numpy
as
np
import
numpy
as
np
from
..utils
import
logger
from
..utils
import
logger
def
prediction_incorrect
(
logits
,
label
,
topk
=
1
):
def
prediction_incorrect
(
logits
,
label
,
topk
=
1
,
name
=
'incorrect_vector'
):
"""
"""
:param logits: NxC
:param logits: NxC
:param label: N
:param label: N
:returns: a float32 vector of length N with 0/1 values, 1 meaning incorrect prediction
:returns: a float32 vector of length N with 0/1 values, 1 meaning incorrect prediction
"""
"""
return
tf
.
cast
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
topk
)),
tf
.
float32
)
return
tf
.
cast
(
tf
.
logical_not
(
tf
.
nn
.
in_top_k
(
logits
,
label
,
topk
)),
tf
.
float32
,
name
=
name
)
def
flatten
(
x
):
def
flatten
(
x
):
"""
"""
...
...
tensorpack/train/multigpu.py
View file @
740e9d8c
...
@@ -143,7 +143,7 @@ class AsyncMultiGPUTrainer(MultiGPUTrainer):
...
@@ -143,7 +143,7 @@ class AsyncMultiGPUTrainer(MultiGPUTrainer):
async_step_total_cnt
=
int
(
re
.
findall
(
async_step_total_cnt
=
int
(
re
.
findall
(
'[0-9]+'
,
self
.
async_step_counter
.
__str__
())[
0
])
'[0-9]+'
,
self
.
async_step_counter
.
__str__
())[
0
])
self
.
write_scalar_summary
(
self
.
write_scalar_summary
(
'async
-global-
step'
,
async_step_total_cnt
)
'async
_global_
step'
,
async_step_total_cnt
)
except
:
except
:
logger
.
exception
(
"Cannot log async
-global-
step"
)
logger
.
exception
(
"Cannot log async
_global_
step"
)
super
(
AsyncMultiGPUTrainer
,
self
)
.
_trigger_epoch
()
super
(
AsyncMultiGPUTrainer
,
self
)
.
_trigger_epoch
()
tensorpack/train/trainer.py
View file @
740e9d8c
...
@@ -115,7 +115,6 @@ class EnqueueThread(threading.Thread):
...
@@ -115,7 +115,6 @@ class EnqueueThread(threading.Thread):
def
run
(
self
):
def
run
(
self
):
self
.
dataflow
.
reset_state
()
self
.
dataflow
.
reset_state
()
with
self
.
sess
.
as_default
():
with
self
.
sess
.
as_default
():
try
:
try
:
while
True
:
while
True
:
...
...
tensorpack/utils/utils.py
View file @
740e9d8c
...
@@ -94,6 +94,12 @@ def get_rng(obj=None):
...
@@ -94,6 +94,12 @@ def get_rng(obj=None):
_EXECUTE_HISTORY
=
set
()
_EXECUTE_HISTORY
=
set
()
def
execute_only_once
():
def
execute_only_once
():
"""
when called with:
if execute_only_once():
# do something
The body is guranteed to be executed only the first time.
"""
f
=
inspect
.
currentframe
()
.
f_back
f
=
inspect
.
currentframe
()
.
f_back
ident
=
(
f
.
f_code
.
co_filename
,
f
.
f_lineno
)
ident
=
(
f
.
f_code
.
co_filename
,
f
.
f_lineno
)
if
ident
in
_EXECUTE_HISTORY
:
if
ident
in
_EXECUTE_HISTORY
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment