Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
710bf4eb
Commit
710bf4eb
authored
Aug 06, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
name scope in symbf & reuse name scope in InputSource (fix #340)
parent
b7de25d9
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
65 additions
and
43 deletions
+65
-43
examples/cifar-convnet.py
examples/cifar-convnet.py
+1
-1
tensorpack/graph_builder/input_source.py
tensorpack/graph_builder/input_source.py
+9
-11
tensorpack/graph_builder/input_source_base.py
tensorpack/graph_builder/input_source_base.py
+19
-0
tensorpack/tfutils/summary.py
tensorpack/tfutils/summary.py
+9
-9
tensorpack/tfutils/symbolic_functions.py
tensorpack/tfutils/symbolic_functions.py
+27
-22
No files found.
examples/cifar-convnet.py
View file @
710bf4eb
...
@@ -155,4 +155,4 @@ if __name__ == '__main__':
...
@@ -155,4 +155,4 @@ if __name__ == '__main__':
if
config
.
nr_tower
<=
1
:
if
config
.
nr_tower
<=
1
:
QueueInputTrainer
(
config
)
.
train
()
QueueInputTrainer
(
config
)
.
train
()
else
:
else
:
AsyncMultiGPUTrain
er
(
config
)
.
train
()
SyncMultiGPUTrainerParameterServ
er
(
config
)
.
train
()
tensorpack/graph_builder/input_source.py
View file @
710bf4eb
...
@@ -228,8 +228,7 @@ class QueueInput(FeedfreeInput):
...
@@ -228,8 +228,7 @@ class QueueInput(FeedfreeInput):
self
.
_input_placehdrs
=
[
v
.
build_placeholder_reuse
()
for
v
in
inputs
]
self
.
_input_placehdrs
=
[
v
.
build_placeholder_reuse
()
for
v
in
inputs
]
assert
len
(
self
.
_input_placehdrs
)
>
0
,
\
assert
len
(
self
.
_input_placehdrs
)
>
0
,
\
"QueueInput has to be used with some inputs!"
"QueueInput has to be used with some inputs!"
with
tf
.
name_scope
(
'QueueInput'
)
as
ns
:
with
self
.
cached_name_scope
():
self
.
_name_scope
=
ns
if
self
.
queue
is
None
:
if
self
.
queue
is
None
:
self
.
queue
=
tf
.
FIFOQueue
(
self
.
queue
=
tf
.
FIFOQueue
(
50
,
[
x
.
dtype
for
x
in
self
.
_input_placehdrs
],
50
,
[
x
.
dtype
for
x
in
self
.
_input_placehdrs
],
...
@@ -243,7 +242,7 @@ class QueueInput(FeedfreeInput):
...
@@ -243,7 +242,7 @@ class QueueInput(FeedfreeInput):
return
[
cb
]
return
[
cb
]
def
_get_input_tensors
(
self
):
def
_get_input_tensors
(
self
):
with
tf
.
device
(
'/cpu:0'
),
tf
.
name_scope
(
self
.
_name_scope
):
with
tf
.
device
(
'/cpu:0'
),
self
.
cached_name_scope
(
):
ret
=
self
.
queue
.
dequeue
(
name
=
'input_deque'
)
ret
=
self
.
queue
.
dequeue
(
name
=
'input_deque'
)
if
isinstance
(
ret
,
tf
.
Tensor
):
# only one input
if
isinstance
(
ret
,
tf
.
Tensor
):
# only one input
ret
=
[
ret
]
ret
=
[
ret
]
...
@@ -294,8 +293,7 @@ class BatchQueueInput(QueueInput):
...
@@ -294,8 +293,7 @@ class BatchQueueInput(QueueInput):
assert
p
.
get_shape
()
.
is_fully_defined
(),
shape_err
assert
p
.
get_shape
()
.
is_fully_defined
(),
shape_err
shapes
.
append
(
p
.
get_shape
())
shapes
.
append
(
p
.
get_shape
())
with
tf
.
name_scope
(
'BatchQueueInput'
)
as
ns
:
with
self
.
cached_name_scope
():
self
.
_name_scope
=
ns
if
self
.
queue
is
None
:
if
self
.
queue
is
None
:
self
.
queue
=
tf
.
FIFOQueue
(
self
.
queue
=
tf
.
FIFOQueue
(
3000
,
[
x
.
dtype
for
x
in
self
.
input_placehdrs
],
3000
,
[
x
.
dtype
for
x
in
self
.
input_placehdrs
],
...
@@ -307,7 +305,7 @@ class BatchQueueInput(QueueInput):
...
@@ -307,7 +305,7 @@ class BatchQueueInput(QueueInput):
self
.
thread
=
EnqueueThread
(
self
.
queue
,
self
.
ds
,
placehdrs_nobatch
)
self
.
thread
=
EnqueueThread
(
self
.
queue
,
self
.
ds
,
placehdrs_nobatch
)
def
_get_input_tensors
(
self
):
def
_get_input_tensors
(
self
):
with
tf
.
device
(
'/cpu:0'
),
tf
.
name_scope
(
self
.
_name_scope
):
with
tf
.
device
(
'/cpu:0'
),
self
.
cached_name_scope
(
):
ret
=
self
.
queue
.
dequeue_many
(
self
.
batch_size
,
name
=
'input_deque'
)
ret
=
self
.
queue
.
dequeue_many
(
self
.
batch_size
,
name
=
'input_deque'
)
if
isinstance
(
ret
,
tf
.
Tensor
):
# only one input
if
isinstance
(
ret
,
tf
.
Tensor
):
# only one input
ret
=
[
ret
]
ret
=
[
ret
]
...
@@ -345,7 +343,8 @@ class TensorInput(FeedfreeInput):
...
@@ -345,7 +343,8 @@ class TensorInput(FeedfreeInput):
return
self
.
_fixed_size
return
self
.
_fixed_size
def
_get_input_tensors
(
self
):
def
_get_input_tensors
(
self
):
ret
=
self
.
get_tensor_fn
()
with
self
.
cached_name_scope
():
ret
=
self
.
get_tensor_fn
()
assert
len
(
ret
)
==
len
(
self
.
_desc
),
"{} != {}"
.
format
(
len
(
ret
),
len
(
self
.
_desc
))
assert
len
(
ret
)
==
len
(
self
.
_desc
),
"{} != {}"
.
format
(
len
(
ret
),
len
(
self
.
_desc
))
return
ret
return
ret
...
@@ -452,8 +451,7 @@ class StagingInputWrapper(FeedfreeInput):
...
@@ -452,8 +451,7 @@ class StagingInputWrapper(FeedfreeInput):
def
_setup_staging_areas
(
self
):
def
_setup_staging_areas
(
self
):
logger
.
info
(
"Setting up StagingArea for GPU prefetching ..."
)
logger
.
info
(
"Setting up StagingArea for GPU prefetching ..."
)
with
tf
.
name_scope
(
'StagingInputWrapper'
)
as
ns
:
with
self
.
cached_name_scope
():
self
.
_name_scope
=
ns
for
idx
,
device
in
enumerate
(
self
.
_devices
):
for
idx
,
device
in
enumerate
(
self
.
_devices
):
with
tf
.
device
(
device
):
with
tf
.
device
(
device
):
inputs
=
self
.
_input
.
get_input_tensors
()
inputs
=
self
.
_input
.
get_input_tensors
()
...
@@ -477,10 +475,10 @@ class StagingInputWrapper(FeedfreeInput):
...
@@ -477,10 +475,10 @@ class StagingInputWrapper(FeedfreeInput):
return
ret
return
ret
def
_get_stage_op
(
self
):
def
_get_stage_op
(
self
):
with
tf
.
name_scope
(
self
.
_name_scope
):
with
self
.
cached_name_scope
(
):
return
tf
.
group
(
*
self
.
_stage_ops
)
return
tf
.
group
(
*
self
.
_stage_ops
)
def
_get_unstage_op
(
self
):
def
_get_unstage_op
(
self
):
with
tf
.
name_scope
(
self
.
_name_scope
):
with
self
.
cached_name_scope
(
):
all_outputs
=
list
(
chain
.
from_iterable
(
self
.
_unstage_ops
))
all_outputs
=
list
(
chain
.
from_iterable
(
self
.
_unstage_ops
))
return
tf
.
group
(
*
all_outputs
)
return
tf
.
group
(
*
all_outputs
)
tensorpack/graph_builder/input_source_base.py
View file @
710bf4eb
...
@@ -4,6 +4,8 @@
...
@@ -4,6 +4,8 @@
from
abc
import
ABCMeta
,
abstractmethod
from
abc
import
ABCMeta
,
abstractmethod
import
six
import
six
from
contextlib
import
contextmanager
import
tensorflow
as
tf
from
..utils.argtools
import
memoized
from
..utils.argtools
import
memoized
from
._utils
import
get_sublist_by_names
,
get_tensors_inputs
from
._utils
import
get_sublist_by_names
,
get_tensors_inputs
...
@@ -15,6 +17,8 @@ __all__ = ['InputSource', 'remap_input_source']
...
@@ -15,6 +17,8 @@ __all__ = ['InputSource', 'remap_input_source']
class
InputSource
(
object
):
class
InputSource
(
object
):
""" Base class for the abstract InputSource. """
""" Base class for the abstract InputSource. """
_name_scope
=
None
def
get_input_tensors
(
self
):
def
get_input_tensors
(
self
):
"""
"""
Returns:
Returns:
...
@@ -76,6 +80,21 @@ class InputSource(object):
...
@@ -76,6 +80,21 @@ class InputSource(object):
def
_size
(
self
):
def
_size
(
self
):
raise
NotImplementedError
()
raise
NotImplementedError
()
@
contextmanager
def
cached_name_scope
(
self
):
"""
Yield a context under a cached name scope, whose name is the name of
this InputSource class.
"""
if
self
.
_name_scope
:
with
tf
.
name_scope
(
self
.
_name_scope
):
yield
self
.
_name_scope
else
:
name
=
type
(
self
)
.
__name__
with
tf
.
name_scope
(
name
)
as
ns
:
self
.
_name_scope
=
ns
yield
ns
class
ProxyInputSource
(
InputSource
):
class
ProxyInputSource
(
InputSource
):
"""
"""
...
...
tensorpack/tfutils/summary.py
View file @
710bf4eb
...
@@ -156,16 +156,14 @@ def _enter_vs_reuse_ns(name):
...
@@ -156,16 +156,14 @@ def _enter_vs_reuse_ns(name):
yield
vs
yield
vs
def
add_moving_summary
(
v
,
*
args
,
**
kwargs
):
def
add_moving_summary
(
*
args
,
**
kwargs
):
"""
"""
Enable moving average summary for some tensors.
Enable moving average summary for some tensors.
It's only effective in the main training tower, otherwise calling this
It's only effective in the main training tower, otherwise calling this
function is a no-op.
function is a no-op.
Args:
Args:
v (tf.Tensor or list): tensor or list of tensors to summary. Must have
args: tensors to summary
scalar type.
args: tensors to summary (to support positional arguments)
decay (float): the decay rate. Defaults to 0.95.
decay (float): the decay rate. Defaults to 0.95.
collection (str): the name of the collection to add EMA-maintaining ops.
collection (str): the name of the collection to add EMA-maintaining ops.
The default will work together with the default
The default will work together with the default
...
@@ -178,9 +176,12 @@ def add_moving_summary(v, *args, **kwargs):
...
@@ -178,9 +176,12 @@ def add_moving_summary(v, *args, **kwargs):
ctx
=
get_current_tower_context
()
ctx
=
get_current_tower_context
()
if
ctx
is
not
None
and
not
ctx
.
is_main_training_tower
:
if
ctx
is
not
None
and
not
ctx
.
is_main_training_tower
:
return
return
if
not
isinstance
(
v
,
list
):
v
=
[
v
]
if
not
isinstance
(
args
[
0
],
list
):
v
.
extend
(
args
)
v
=
args
else
:
log_deprecated
(
"Call add_moving_summary with positional args instead of a list!"
)
v
=
args
[
0
]
for
x
in
v
:
for
x
in
v
:
assert
isinstance
(
x
,
tf
.
Tensor
),
x
assert
isinstance
(
x
,
tf
.
Tensor
),
x
assert
x
.
get_shape
()
.
ndims
==
0
,
x
.
get_shape
()
assert
x
.
get_shape
()
.
ndims
==
0
,
x
.
get_shape
()
...
@@ -195,8 +196,7 @@ def add_moving_summary(v, *args, **kwargs):
...
@@ -195,8 +196,7 @@ def add_moving_summary(v, *args, **kwargs):
ema_var
=
tf
.
get_variable
(
name
,
shape
=
c
.
shape
,
dtype
=
c
.
dtype
,
ema_var
=
tf
.
get_variable
(
name
,
shape
=
c
.
shape
,
dtype
=
c
.
dtype
,
initializer
=
tf
.
constant_initializer
(),
trainable
=
False
)
initializer
=
tf
.
constant_initializer
(),
trainable
=
False
)
ns
=
vs
.
original_name_scope
ns
=
vs
.
original_name_scope
# first clear NS to avoid duplicated name in variables
with
tf
.
name_scope
(
ns
):
# reuse VS&NS so that no EMA_1 will appear
with
tf
.
name_scope
(
ns
):
ema_op
=
moving_averages
.
assign_moving_average
(
ema_op
=
moving_averages
.
assign_moving_average
(
ema_var
,
c
,
decay
,
ema_var
,
c
,
decay
,
zero_debias
=
True
,
name
=
name
+
'_EMA_apply'
)
zero_debias
=
True
,
name
=
name
+
'_EMA_apply'
)
...
...
tensorpack/tfutils/symbolic_functions.py
View file @
710bf4eb
...
@@ -65,16 +65,17 @@ def class_balanced_cross_entropy(pred, label, name='cross_entropy_loss'):
...
@@ -65,16 +65,17 @@ def class_balanced_cross_entropy(pred, label, name='cross_entropy_loss'):
Returns:
Returns:
class-balanced cross entropy loss.
class-balanced cross entropy loss.
"""
"""
z
=
batch_flatten
(
pred
)
with
tf
.
name_scope
(
'class_balanced_cross_entropy'
):
y
=
tf
.
cast
(
batch_flatten
(
label
),
tf
.
float32
)
z
=
batch_flatten
(
pred
)
y
=
tf
.
cast
(
batch_flatten
(
label
),
tf
.
float32
)
count_neg
=
tf
.
reduce_sum
(
1.
-
y
)
count_neg
=
tf
.
reduce_sum
(
1.
-
y
)
count_pos
=
tf
.
reduce_sum
(
y
)
count_pos
=
tf
.
reduce_sum
(
y
)
beta
=
count_neg
/
(
count_neg
+
count_pos
)
beta
=
count_neg
/
(
count_neg
+
count_pos
)
eps
=
1e-12
eps
=
1e-12
loss_pos
=
-
beta
*
tf
.
reduce_mean
(
y
*
tf
.
log
(
z
+
eps
))
loss_pos
=
-
beta
*
tf
.
reduce_mean
(
y
*
tf
.
log
(
z
+
eps
))
loss_neg
=
(
1.
-
beta
)
*
tf
.
reduce_mean
((
1.
-
y
)
*
tf
.
log
(
1.
-
z
+
eps
))
loss_neg
=
(
1.
-
beta
)
*
tf
.
reduce_mean
((
1.
-
y
)
*
tf
.
log
(
1.
-
z
+
eps
))
cost
=
tf
.
subtract
(
loss_pos
,
loss_neg
,
name
=
name
)
cost
=
tf
.
subtract
(
loss_pos
,
loss_neg
,
name
=
name
)
return
cost
return
cost
...
@@ -84,16 +85,18 @@ def class_balanced_sigmoid_cross_entropy(logits, label, name='cross_entropy_loss
...
@@ -84,16 +85,18 @@ def class_balanced_sigmoid_cross_entropy(logits, label, name='cross_entropy_loss
This function accepts logits rather than predictions, and is more numerically stable than
This function accepts logits rather than predictions, and is more numerically stable than
:func:`class_balanced_cross_entropy`.
:func:`class_balanced_cross_entropy`.
"""
"""
y
=
tf
.
cast
(
label
,
tf
.
float32
)
with
tf
.
name_scope
(
'class_balanced_sigmoid_cross_entropy'
):
y
=
tf
.
cast
(
label
,
tf
.
float32
)
count_neg
=
tf
.
reduce_sum
(
1.
-
y
)
count_neg
=
tf
.
reduce_sum
(
1.
-
y
)
count_pos
=
tf
.
reduce_sum
(
y
)
count_pos
=
tf
.
reduce_sum
(
y
)
beta
=
count_neg
/
(
count_neg
+
count_pos
)
beta
=
count_neg
/
(
count_neg
+
count_pos
)
pos_weight
=
beta
/
(
1
-
beta
)
pos_weight
=
beta
/
(
1
-
beta
)
cost
=
tf
.
nn
.
weighted_cross_entropy_with_logits
(
logits
=
logits
,
targets
=
y
,
pos_weight
=
pos_weight
)
cost
=
tf
.
nn
.
weighted_cross_entropy_with_logits
(
logits
=
logits
,
targets
=
y
,
pos_weight
=
pos_weight
)
cost
=
tf
.
reduce_mean
(
cost
*
(
1
-
beta
))
cost
=
tf
.
reduce_mean
(
cost
*
(
1
-
beta
))
return
tf
.
where
(
tf
.
equal
(
count_pos
,
0.0
),
0.0
,
cost
,
name
=
name
)
zero
=
tf
.
equal
(
count_pos
,
0.0
)
return
tf
.
where
(
zero
,
0.0
,
cost
,
name
=
name
)
def
print_stat
(
x
,
message
=
None
):
def
print_stat
(
x
,
message
=
None
):
...
@@ -135,12 +138,14 @@ def huber_loss(x, delta=1, name='huber_loss'):
...
@@ -135,12 +138,14 @@ def huber_loss(x, delta=1, name='huber_loss'):
Returns:
Returns:
a tensor of the same shape of x.
a tensor of the same shape of x.
"""
"""
sqrcost
=
tf
.
square
(
x
)
with
tf
.
name_scope
(
'huber_loss'
):
abscost
=
tf
.
abs
(
x
)
sqrcost
=
tf
.
square
(
x
)
return
tf
.
where
(
abscost
<
delta
,
abscost
=
tf
.
abs
(
x
)
sqrcost
*
0.5
,
abscost
*
delta
-
0.5
*
delta
**
2
,
cond
=
abscost
<
delta
name
=
name
)
l2
=
sqrcost
*
0.5
l1
=
abscost
*
delta
-
0.5
*
delta
**
2
return
tf
.
where
(
cond
,
l2
,
l1
,
name
=
name
)
def
get_scalar_var
(
name
,
init_value
,
summary
=
False
,
trainable
=
False
):
def
get_scalar_var
(
name
,
init_value
,
summary
=
False
,
trainable
=
False
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment