Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
6eb0bebe
Commit
6eb0bebe
authored
Oct 17, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
warning about default relu
parent
dc59ad5f
Changes
11
Hide whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
48 additions
and
39 deletions
+48
-39
examples/DisturbLabel/mnist-disturb.py
examples/DisturbLabel/mnist-disturb.py
+2
-2
examples/HED/hed.py
examples/HED/hed.py
+1
-1
examples/Inception/inception-bn.py
examples/Inception/inception-bn.py
+2
-2
examples/cifar-convnet.py
examples/cifar-convnet.py
+2
-2
examples/load-alexnet.py
examples/load-alexnet.py
+13
-12
examples/load-vgg16.py
examples/load-vgg16.py
+3
-4
examples/mnist-convnet.py
examples/mnist-convnet.py
+1
-1
examples/svhn-digit-convnet.py
examples/svhn-digit-convnet.py
+12
-11
tensorpack/models/conv2d.py
tensorpack/models/conv2d.py
+6
-2
tensorpack/models/fc.py
tensorpack/models/fc.py
+5
-1
tensorpack/models/model_desc.py
tensorpack/models/model_desc.py
+1
-1
No files found.
examples/DisturbLabel/mnist-disturb.py
View file @
6eb0bebe
...
@@ -29,13 +29,13 @@ class Model(mnist_example.Model):
...
@@ -29,13 +29,13 @@ class Model(mnist_example.Model):
image
,
label
=
input_vars
image
,
label
=
input_vars
image
=
tf
.
expand_dims
(
image
,
3
)
image
=
tf
.
expand_dims
(
image
,
3
)
with
argscope
(
Conv2D
,
kernel_shape
=
5
):
with
argscope
(
Conv2D
,
kernel_shape
=
5
,
nl
=
tf
.
nn
.
relu
):
logits
=
(
LinearWrap
(
image
)
# the starting brace is only for line-breaking
logits
=
(
LinearWrap
(
image
)
# the starting brace is only for line-breaking
.
Conv2D
(
'conv0'
,
out_channel
=
32
,
padding
=
'VALID'
)
.
Conv2D
(
'conv0'
,
out_channel
=
32
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool0'
,
2
)
.
MaxPooling
(
'pool0'
,
2
)
.
Conv2D
(
'conv1'
,
out_channel
=
64
,
padding
=
'VALID'
)
.
Conv2D
(
'conv1'
,
out_channel
=
64
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool1'
,
2
)
.
MaxPooling
(
'pool1'
,
2
)
.
FullyConnected
(
'fc0'
,
512
)
.
FullyConnected
(
'fc0'
,
512
,
nl
=
tf
.
nn
.
relu
)
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
...
...
examples/HED/hed.py
View file @
6eb0bebe
...
@@ -34,7 +34,7 @@ class Model(ModelDesc):
...
@@ -34,7 +34,7 @@ class Model(ModelDesc):
up
=
up
/
2
up
=
up
/
2
return
l
return
l
with
argscope
(
Conv2D
,
kernel_shape
=
3
):
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
tf
.
nn
.
relu
):
l
=
Conv2D
(
'conv1_1'
,
image
,
64
)
l
=
Conv2D
(
'conv1_1'
,
image
,
64
)
l
=
Conv2D
(
'conv1_2'
,
l
,
64
)
l
=
Conv2D
(
'conv1_2'
,
l
,
64
)
b1
=
branch
(
'branch1'
,
l
,
1
)
b1
=
branch
(
'branch1'
,
l
,
1
)
...
...
examples/Inception/inception-bn.py
View file @
6eb0bebe
...
@@ -71,7 +71,7 @@ class Model(ModelDesc):
...
@@ -71,7 +71,7 @@ class Model(ModelDesc):
l
=
inception
(
'incep3c'
,
l
,
0
,
128
,
160
,
64
,
96
,
0
,
'max'
)
l
=
inception
(
'incep3c'
,
l
,
0
,
128
,
160
,
64
,
96
,
0
,
'max'
)
br1
=
Conv2D
(
'loss1conv'
,
l
,
128
,
1
)
br1
=
Conv2D
(
'loss1conv'
,
l
,
128
,
1
)
br1
=
FullyConnected
(
'loss1fc'
,
br1
,
1024
)
br1
=
FullyConnected
(
'loss1fc'
,
br1
,
1024
,
nl
=
tf
.
nn
.
relu
)
br1
=
FullyConnected
(
'loss1logit'
,
br1
,
1000
,
nl
=
tf
.
identity
)
br1
=
FullyConnected
(
'loss1logit'
,
br1
,
1000
,
nl
=
tf
.
identity
)
loss1
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
br1
,
label
)
loss1
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
br1
,
label
)
loss1
=
tf
.
reduce_mean
(
loss1
,
name
=
'loss1'
)
loss1
=
tf
.
reduce_mean
(
loss1
,
name
=
'loss1'
)
...
@@ -84,7 +84,7 @@ class Model(ModelDesc):
...
@@ -84,7 +84,7 @@ class Model(ModelDesc):
l
=
inception
(
'incep4e'
,
l
,
0
,
128
,
192
,
192
,
256
,
0
,
'max'
)
l
=
inception
(
'incep4e'
,
l
,
0
,
128
,
192
,
192
,
256
,
0
,
'max'
)
br2
=
Conv2D
(
'loss2conv'
,
l
,
128
,
1
)
br2
=
Conv2D
(
'loss2conv'
,
l
,
128
,
1
)
br2
=
FullyConnected
(
'loss2fc'
,
br2
,
1024
)
br2
=
FullyConnected
(
'loss2fc'
,
br2
,
1024
,
nl
=
tf
.
nn
.
relu
)
br2
=
FullyConnected
(
'loss2logit'
,
br2
,
1000
,
nl
=
tf
.
identity
)
br2
=
FullyConnected
(
'loss2logit'
,
br2
,
1000
,
nl
=
tf
.
identity
)
loss2
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
br2
,
label
)
loss2
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
br2
,
label
)
loss2
=
tf
.
reduce_mean
(
loss2
,
name
=
'loss2'
)
loss2
=
tf
.
reduce_mean
(
loss2
,
name
=
'loss2'
)
...
...
examples/cifar-convnet.py
View file @
6eb0bebe
...
@@ -51,10 +51,10 @@ class Model(ModelDesc):
...
@@ -51,10 +51,10 @@ class Model(ModelDesc):
.
MaxPooling
(
'pool2'
,
3
,
stride
=
2
,
padding
=
'SAME'
)
\
.
MaxPooling
(
'pool2'
,
3
,
stride
=
2
,
padding
=
'SAME'
)
\
.
Conv2D
(
'conv3.1'
,
out_channel
=
128
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv3.1'
,
out_channel
=
128
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv3.2'
,
out_channel
=
128
,
padding
=
'VALID'
)
\
.
Conv2D
(
'conv3.2'
,
out_channel
=
128
,
padding
=
'VALID'
)
\
.
FullyConnected
(
'fc0'
,
1024
+
512
,
.
FullyConnected
(
'fc0'
,
1024
+
512
,
nl
=
tf
.
nn
.
relu
,
b_init
=
tf
.
constant_initializer
(
0.1
))
\
b_init
=
tf
.
constant_initializer
(
0.1
))
\
.
tf
.
nn
.
dropout
(
keep_prob
)
\
.
tf
.
nn
.
dropout
(
keep_prob
)
\
.
FullyConnected
(
'fc1'
,
512
,
.
FullyConnected
(
'fc1'
,
512
,
nl
=
tf
.
nn
.
relu
,
b_init
=
tf
.
constant_initializer
(
0.1
))
\
b_init
=
tf
.
constant_initializer
(
0.1
))
\
.
FullyConnected
(
'linear'
,
out_dim
=
self
.
cifar_classnum
,
nl
=
tf
.
identity
)()
.
FullyConnected
(
'linear'
,
out_dim
=
self
.
cifar_classnum
,
nl
=
tf
.
identity
)()
...
...
examples/load-alexnet.py
View file @
6eb0bebe
...
@@ -29,21 +29,22 @@ class Model(ModelDesc):
...
@@ -29,21 +29,22 @@ class Model(ModelDesc):
image
,
label
=
inputs
image
,
label
=
inputs
l
=
Conv2D
(
'conv1'
,
image
,
out_channel
=
96
,
kernel_shape
=
11
,
stride
=
4
,
padding
=
'VALID'
)
with
argscope
([
Conv2D
,
FullyConnected
],
nl
=
tf
.
nn
.
relu
):
l
=
tf
.
nn
.
lrn
(
l
,
2
,
bias
=
1.0
,
alpha
=
2e-5
,
beta
=
0.75
,
name
=
'norm1'
)
l
=
Conv2D
(
'conv1'
,
image
,
out_channel
=
96
,
kernel_shape
=
11
,
stride
=
4
,
padding
=
'VALID'
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
tf
.
nn
.
lrn
(
l
,
2
,
bias
=
1.0
,
alpha
=
2e-5
,
beta
=
0.75
,
name
=
'norm1'
)
l
=
MaxPooling
(
'pool1'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
=
256
,
kernel_shape
=
5
,
split
=
2
)
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
=
256
,
kernel_shape
=
5
,
split
=
2
)
l
=
tf
.
nn
.
lrn
(
l
,
2
,
bias
=
1.0
,
alpha
=
2e-5
,
beta
=
0.75
,
name
=
'norm2'
)
l
=
tf
.
nn
.
lrn
(
l
,
2
,
bias
=
1.0
,
alpha
=
2e-5
,
beta
=
0.75
,
name
=
'norm2'
)
l
=
MaxPooling
(
'pool2'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
MaxPooling
(
'pool2'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
Conv2D
(
'conv3'
,
l
,
out_channel
=
384
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv3'
,
l
,
out_channel
=
384
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv4'
,
l
,
out_channel
=
384
,
kernel_shape
=
3
,
split
=
2
)
l
=
Conv2D
(
'conv4'
,
l
,
out_channel
=
384
,
kernel_shape
=
3
,
split
=
2
)
l
=
Conv2D
(
'conv5'
,
l
,
out_channel
=
256
,
kernel_shape
=
3
,
split
=
2
)
l
=
Conv2D
(
'conv5'
,
l
,
out_channel
=
256
,
kernel_shape
=
3
,
split
=
2
)
l
=
MaxPooling
(
'pool3'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
MaxPooling
(
'pool3'
,
l
,
3
,
stride
=
2
,
padding
=
'VALID'
)
l
=
FullyConnected
(
'fc6'
,
l
,
4096
)
l
=
FullyConnected
(
'fc6'
,
l
,
4096
)
l
=
FullyConnected
(
'fc7'
,
l
,
out_dim
=
4096
)
l
=
FullyConnected
(
'fc7'
,
l
,
out_dim
=
4096
)
# fc will have activation summary by default. disable this for the output layer
# fc will have activation summary by default. disable this for the output layer
logits
=
FullyConnected
(
'fc8'
,
l
,
out_dim
=
1000
,
nl
=
tf
.
identity
)
logits
=
FullyConnected
(
'fc8'
,
l
,
out_dim
=
1000
,
nl
=
tf
.
identity
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
...
...
examples/load-vgg16.py
View file @
6eb0bebe
...
@@ -36,7 +36,7 @@ class Model(ModelDesc):
...
@@ -36,7 +36,7 @@ class Model(ModelDesc):
image
,
label
=
inputs
image
,
label
=
inputs
with
argscope
(
Conv2D
,
kernel_shape
=
3
):
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
tf
.
nn
.
relu
):
# 224
# 224
logits
=
(
LinearWrap
(
image
)
logits
=
(
LinearWrap
(
image
)
.
Conv2D
(
'conv1_1'
,
64
)
.
Conv2D
(
'conv1_1'
,
64
)
...
@@ -62,10 +62,9 @@ class Model(ModelDesc):
...
@@ -62,10 +62,9 @@ class Model(ModelDesc):
.
Conv2D
(
'conv5_3'
,
512
)
.
Conv2D
(
'conv5_3'
,
512
)
.
MaxPooling
(
'pool5'
,
2
)
.
MaxPooling
(
'pool5'
,
2
)
# 7
# 7
.
FullyConnected
(
'fc6'
,
4096
)
.
FullyConnected
(
'fc6'
,
4096
,
nl
=
tf
.
nn
.
relu
)
.
Dropout
(
'drop0'
,
0.5
)
.
Dropout
(
'drop0'
,
0.5
)
.
print_tensor
()
.
FullyConnected
(
'fc7'
,
4096
,
nl
=
tf
.
nn
.
relu
)
.
FullyConnected
(
'fc7'
,
4096
)
.
Dropout
(
'drop1'
,
0.5
)
.
Dropout
(
'drop1'
,
0.5
)
.
FullyConnected
(
'fc8'
,
out_dim
=
1000
,
nl
=
tf
.
identity
)())
.
FullyConnected
(
'fc8'
,
out_dim
=
1000
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
...
...
examples/mnist-convnet.py
View file @
6eb0bebe
...
@@ -54,7 +54,7 @@ class Model(ModelDesc):
...
@@ -54,7 +54,7 @@ class Model(ModelDesc):
.
Conv2D
(
'conv2'
)
.
Conv2D
(
'conv2'
)
.
MaxPooling
(
'pool1'
,
2
)
.
MaxPooling
(
'pool1'
,
2
)
.
Conv2D
(
'conv3'
)
.
Conv2D
(
'conv3'
)
.
FullyConnected
(
'fc0'
,
512
)
.
FullyConnected
(
'fc0'
,
512
,
nl
=
tf
.
nn
.
relu
)
.
Dropout
(
'dropout'
,
0.5
)
.
Dropout
(
'dropout'
,
0.5
)
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
.
FullyConnected
(
'fc1'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
# a Bx10 with probabilities
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
# a Bx10 with probabilities
...
...
examples/svhn-digit-convnet.py
View file @
6eb0bebe
...
@@ -29,17 +29,18 @@ class Model(ModelDesc):
...
@@ -29,17 +29,18 @@ class Model(ModelDesc):
image
=
image
/
128.0
-
1
image
=
image
/
128.0
-
1
logits
=
(
LinearWrap
(
image
)
with
argscope
(
Conv2D
,
nl
=
tf
.
nn
.
relu
):
.
Conv2D
(
'conv1'
,
24
,
5
,
padding
=
'VALID'
)
logits
=
(
LinearWrap
(
image
)
.
MaxPooling
(
'pool1'
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv1'
,
24
,
5
,
padding
=
'VALID'
)
.
Conv2D
(
'conv2'
,
32
,
3
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool1'
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv3'
,
32
,
3
,
padding
=
'VALID'
)
.
Conv2D
(
'conv2'
,
32
,
3
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool2'
,
2
,
padding
=
'SAME'
)
.
Conv2D
(
'conv3'
,
32
,
3
,
padding
=
'VALID'
)
.
Conv2D
(
'conv4'
,
64
,
3
,
padding
=
'VALID'
)
.
MaxPooling
(
'pool2'
,
2
,
padding
=
'SAME'
)
.
Dropout
(
'drop'
,
0.5
)
.
Conv2D
(
'conv4'
,
64
,
3
,
padding
=
'VALID'
)
.
FullyConnected
(
'fc0'
,
512
,
.
Dropout
(
'drop'
,
0.5
)
b_init
=
tf
.
constant_initializer
(
0.1
))
.
FullyConnected
(
'fc0'
,
512
,
.
FullyConnected
(
'linear'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
b_init
=
tf
.
constant_initializer
(
0.1
),
nl
=
tf
.
nn
.
relu
)
.
FullyConnected
(
'linear'
,
out_dim
=
10
,
nl
=
tf
.
identity
)())
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'output'
)
# compute the number of failed samples, for ClassificationError to use at test time
# compute the number of failed samples, for ClassificationError to use at test time
...
...
tensorpack/models/conv2d.py
View file @
6eb0bebe
...
@@ -7,7 +7,7 @@ import numpy as np
...
@@ -7,7 +7,7 @@ import numpy as np
import
tensorflow
as
tf
import
tensorflow
as
tf
import
math
import
math
from
._common
import
*
from
._common
import
*
from
..utils
import
map_arg
from
..utils
import
map_arg
,
logger
__all__
=
[
'Conv2D'
]
__all__
=
[
'Conv2D'
]
...
@@ -15,7 +15,7 @@ __all__ = ['Conv2D']
...
@@ -15,7 +15,7 @@ __all__ = ['Conv2D']
def
Conv2D
(
x
,
out_channel
,
kernel_shape
,
def
Conv2D
(
x
,
out_channel
,
kernel_shape
,
padding
=
'SAME'
,
stride
=
1
,
padding
=
'SAME'
,
stride
=
1
,
W_init
=
None
,
b_init
=
None
,
W_init
=
None
,
b_init
=
None
,
nl
=
tf
.
nn
.
relu
,
split
=
1
,
use_bias
=
True
):
nl
=
None
,
split
=
1
,
use_bias
=
True
):
"""
"""
2D convolution on 4D inputs.
2D convolution on 4D inputs.
...
@@ -59,5 +59,9 @@ def Conv2D(x, out_channel, kernel_shape,
...
@@ -59,5 +59,9 @@ def Conv2D(x, out_channel, kernel_shape,
outputs
=
[
tf
.
nn
.
conv2d
(
i
,
k
,
stride
,
padding
)
outputs
=
[
tf
.
nn
.
conv2d
(
i
,
k
,
stride
,
padding
)
for
i
,
k
in
zip
(
inputs
,
kernels
)]
for
i
,
k
in
zip
(
inputs
,
kernels
)]
conv
=
tf
.
concat
(
3
,
outputs
)
conv
=
tf
.
concat
(
3
,
outputs
)
if
nl
is
None
:
logger
.
warn
(
"[DEPRECATED] Default nonlinearity for Conv2D and FullyConnected will be deprecated."
)
logger
.
warn
(
"[DEPRECATED] Please use argscope instead."
)
nl
=
tf
.
nn
.
relu
return
nl
(
tf
.
nn
.
bias_add
(
conv
,
b
)
if
use_bias
else
conv
,
name
=
'output'
)
return
nl
(
tf
.
nn
.
bias_add
(
conv
,
b
)
if
use_bias
else
conv
,
name
=
'output'
)
tensorpack/models/fc.py
View file @
6eb0bebe
...
@@ -14,7 +14,7 @@ __all__ = ['FullyConnected']
...
@@ -14,7 +14,7 @@ __all__ = ['FullyConnected']
@
layer_register
()
@
layer_register
()
def
FullyConnected
(
x
,
out_dim
,
def
FullyConnected
(
x
,
out_dim
,
W_init
=
None
,
b_init
=
None
,
W_init
=
None
,
b_init
=
None
,
nl
=
tf
.
nn
.
relu
,
use_bias
=
True
):
nl
=
None
,
use_bias
=
True
):
"""
"""
Fully-Connected layer.
Fully-Connected layer.
...
@@ -39,4 +39,8 @@ def FullyConnected(x, out_dim,
...
@@ -39,4 +39,8 @@ def FullyConnected(x, out_dim,
if
use_bias
:
if
use_bias
:
b
=
tf
.
get_variable
(
'b'
,
[
out_dim
],
initializer
=
b_init
)
b
=
tf
.
get_variable
(
'b'
,
[
out_dim
],
initializer
=
b_init
)
prod
=
tf
.
nn
.
xw_plus_b
(
x
,
W
,
b
)
if
use_bias
else
tf
.
matmul
(
x
,
W
)
prod
=
tf
.
nn
.
xw_plus_b
(
x
,
W
,
b
)
if
use_bias
else
tf
.
matmul
(
x
,
W
)
if
nl
is
None
:
logger
.
warn
(
"[DEPRECATED] Default nonlinearity for Conv2D and FullyConnected will be deprecated."
)
logger
.
warn
(
"[DEPRECATED] Please use argscope instead."
)
nl
=
tf
.
nn
.
relu
return
nl
(
prod
,
name
=
'output'
)
return
nl
(
prod
,
name
=
'output'
)
tensorpack/models/model_desc.py
View file @
6eb0bebe
...
@@ -133,7 +133,7 @@ class ModelDesc(object):
...
@@ -133,7 +133,7 @@ class ModelDesc(object):
:returns: the cost to minimize. a scalar variable
:returns: the cost to minimize. a scalar variable
"""
"""
if
len
(
inspect
.
getargspec
(
self
.
_build_graph
)
.
args
)
==
3
:
if
len
(
inspect
.
getargspec
(
self
.
_build_graph
)
.
args
)
==
3
:
logger
.
warn
(
"_build_graph(self, input_vars, is_training) is deprecated!
\
logger
.
warn
(
"
[DEPRECATED]
_build_graph(self, input_vars, is_training) is deprecated!
\
Use _build_graph(self, input_vars) and get_current_tower_context().is_training instead."
)
Use _build_graph(self, input_vars) and get_current_tower_context().is_training instead."
)
self
.
_build_graph
(
model_inputs
,
get_current_tower_context
()
.
is_training
)
self
.
_build_graph
(
model_inputs
,
get_current_tower_context
()
.
is_training
)
else
:
else
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment