Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
62d54f68
Commit
62d54f68
authored
Sep 21, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update keras example
parent
ccd67e86
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
46 deletions
+32
-46
examples/mnist-keras.py
examples/mnist-keras.py
+32
-46
No files found.
examples/mnist-keras.py
View file @
62d54f68
...
@@ -10,6 +10,7 @@ import os
...
@@ -10,6 +10,7 @@ import os
import
sys
import
sys
import
argparse
import
argparse
import
keras
import
keras.layers
as
KL
import
keras.layers
as
KL
import
keras.backend
as
KB
import
keras.backend
as
KB
from
keras.models
import
Sequential
from
keras.models
import
Sequential
...
@@ -27,52 +28,45 @@ from tensorpack.utils.argtools import memoized
...
@@ -27,52 +28,45 @@ from tensorpack.utils.argtools import memoized
IMAGE_SIZE
=
28
IMAGE_SIZE
=
28
@
memoized
# this is necessary for sonnet/Keras to work under tensorpack
def
get_keras_model
():
M
=
Sequential
()
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
input_shape
=
[
IMAGE_SIZE
,
IMAGE_SIZE
,
1
],
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
padding
=
'same'
,
activation
=
'relu'
))
M
.
add
(
KL
.
Flatten
())
M
.
add
(
KL
.
Dense
(
512
,
activation
=
'relu'
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
M
.
add
(
KL
.
Dropout
(
0.5
))
M
.
add
(
KL
.
Dense
(
10
,
activation
=
None
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
return
M
class
Model
(
ModelDesc
):
class
Model
(
ModelDesc
):
def
_get_inputs
(
self
):
def
_get_inputs
(
self
):
return
[
InputDesc
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
return
[
InputDesc
(
tf
.
float32
,
(
None
,
IMAGE_SIZE
,
IMAGE_SIZE
),
'input'
),
InputDesc
(
tf
.
int32
,
(
None
,),
'label'
),
InputDesc
(
tf
.
int32
,
(
None
,),
'label'
)]
]
@
memoized
# this is necessary for sonnet/Keras to work under tensorpack
def
_build_keras_model
(
self
):
M
=
Sequential
()
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
input_shape
=
[
IMAGE_SIZE
,
IMAGE_SIZE
,
1
],
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
activation
=
'relu'
,
padding
=
'same'
))
M
.
add
(
KL
.
MaxPooling2D
())
M
.
add
(
KL
.
Conv2D
(
32
,
3
,
padding
=
'same'
,
activation
=
'relu'
))
M
.
add
(
KL
.
Flatten
())
M
.
add
(
KL
.
Dense
(
512
,
activation
=
'relu'
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
M
.
add
(
KL
.
Dropout
(
0.5
))
M
.
add
(
KL
.
Dense
(
10
,
activation
=
None
,
kernel_regularizer
=
regularizers
.
l2
(
1e-5
)))
return
M
def
_build_graph
(
self
,
inputs
):
def
_build_graph
(
self
,
inputs
):
image
,
label
=
inputs
image
,
label
=
inputs
image
=
tf
.
expand_dims
(
image
,
3
)
image
=
tf
.
expand_dims
(
image
,
3
)
*
2
-
1
image
=
image
*
2
-
1
# center the pixels values at zero
with
argscope
(
Conv2D
,
kernel_shape
=
3
,
nl
=
tf
.
nn
.
relu
,
out_channel
=
32
):
M
=
get_keras_model
()
M
=
self
.
_build_keras_model
()
logits
=
M
(
image
)
logits
=
M
(
image
)
# build cost function by tensorflow
prob
=
tf
.
nn
.
softmax
(
logits
,
name
=
'prob'
)
# a Bx10 with probabilities
# a vector of length B with loss of each sample
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
cost
=
tf
.
reduce_mean
(
cost
,
name
=
'cross_entropy_loss'
)
# the average cross-entropy loss
# for tensorpack validation
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
,
name
=
'incorrect'
)
wrong
=
symbolic_functions
.
prediction_incorrect
(
logits
,
label
,
name
=
'incorrect'
)
train_error
=
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
)
train_error
=
tf
.
reduce_mean
(
wrong
,
name
=
'train_error'
)
summary
.
add_moving_summary
(
train_error
)
summary
.
add_moving_summary
(
train_error
)
wd_cost
=
tf
.
add_n
(
M
.
losses
,
name
=
'regularize_loss'
)
# this is how Keras manage regularizers
wd_cost
=
tf
.
add_n
(
M
.
losses
,
name
=
'regularize_loss'
)
# this is how Keras manage regularizers
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
self
.
cost
=
tf
.
add_n
([
wd_cost
,
cost
],
name
=
'total_cost'
)
summary
.
add_moving_summary
(
cost
,
wd_cost
,
self
.
cost
)
summary
.
add_moving_summary
(
self
.
cost
)
# this is the keras naming
summary
.
add_param_summary
((
'conv2d.*/kernel'
,
[
'histogram'
,
'rms'
]))
def
_get_optimizer
(
self
):
def
_get_optimizer
(
self
):
lr
=
tf
.
train
.
exponential_decay
(
lr
=
tf
.
train
.
exponential_decay
(
...
@@ -84,7 +78,7 @@ class Model(ModelDesc):
...
@@ -84,7 +78,7 @@ class Model(ModelDesc):
return
tf
.
train
.
AdamOptimizer
(
lr
)
return
tf
.
train
.
AdamOptimizer
(
lr
)
# Keras needs an extra input
# Keras needs an extra input
if learning_phase is needed
class
KerasCallback
(
Callback
):
class
KerasCallback
(
Callback
):
def
__init__
(
self
,
isTrain
):
def
__init__
(
self
,
isTrain
):
self
.
_isTrain
=
isTrain
self
.
_isTrain
=
isTrain
...
@@ -106,31 +100,23 @@ def get_config():
...
@@ -106,31 +100,23 @@ def get_config():
dataset_train
,
dataset_test
=
get_data
()
dataset_train
,
dataset_test
=
get_data
()
return
TrainConfig
(
return
TrainConfig
(
model
=
Model
(
),
model
=
KerasModel
(
get_keras_model
()
),
dataflow
=
dataset_train
,
dataflow
=
dataset_train
,
callbacks
=
[
callbacks
=
[
KerasCallback
(
1
),
# for Keras training
KerasCallback
(
True
),
# for Keras training
ModelSaver
(),
ModelSaver
(),
InferenceRunner
(
InferenceRunner
(
dataset_test
,
dataset_test
,
[
ScalarStats
(
'cross_entropy_loss'
),
ClassificationError
(
'incorrect'
)],
[
ScalarStats
(
'cross_entropy_loss'
),
ClassificationError
(
'incorrect'
)],
extra_hooks
=
[
CallbackToHook
(
KerasCallback
(
0
))]),
# for keras inference
extra_hooks
=
[
CallbackToHook
(
KerasCallback
(
False
))]),
# for keras inference
],
],
max_epoch
=
100
,
max_epoch
=
100
,
)
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--gpu'
,
help
=
'comma separated list of GPU(s) to use.'
)
args
=
parser
.
parse_args
()
if
args
.
gpu
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
args
.
gpu
config
=
get_config
()
config
=
get_config
()
if
args
.
gpu
:
QueueInputTrainer
(
config
)
.
train
()
config
.
nr_tower
=
len
(
args
.
gpu
.
split
(
','
))
# for multigpu training:
if
config
.
nr_tower
>
1
:
# config.nr_tower = 2
SyncMultiGPUTrainer
(
config
)
.
train
()
# SyncMultiGPUTrainer(config).train()
else
:
QueueInputTrainer
(
config
)
.
train
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment