Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
5bc36930
Commit
5bc36930
authored
Feb 14, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
lr multiplier
parent
7fe010cb
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
29 additions
and
11 deletions
+29
-11
example_mnist.py
example_mnist.py
+3
-2
tensorpack/models/model_desc.py
tensorpack/models/model_desc.py
+1
-1
tensorpack/train.py
tensorpack/train.py
+25
-8
No files found.
example_mnist.py
View file @
5bc36930
#!/usr/bin/env python2
#!/usr/bin/env python2
# -*- coding:
UTF
-8 -*-
# -*- coding:
utf
-8 -*-
# File: example_mnist.py
# File: example_mnist.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
...
@@ -38,7 +38,7 @@ class Model(ModelDesc):
...
@@ -38,7 +38,7 @@ class Model(ModelDesc):
image
=
tf
.
expand_dims
(
image
,
3
)
# add a single channel
image
=
tf
.
expand_dims
(
image
,
3
)
# add a single channel
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv1'
,
image
,
out_channel
=
32
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv1'
,
l
,
out_channel
=
32
,
kernel_shape
=
3
)
l
=
MaxPooling
(
'pool0'
,
l
,
2
)
l
=
MaxPooling
(
'pool0'
,
l
,
2
)
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
=
40
,
kernel_shape
=
3
)
l
=
Conv2D
(
'conv2'
,
l
,
out_channel
=
40
,
kernel_shape
=
3
)
l
=
MaxPooling
(
'pool1'
,
l
,
2
)
l
=
MaxPooling
(
'pool1'
,
l
,
2
)
...
@@ -122,3 +122,4 @@ if __name__ == '__main__':
...
@@ -122,3 +122,4 @@ if __name__ == '__main__':
if
args
.
load
:
if
args
.
load
:
config
.
session_init
=
SaverRestore
(
args
.
load
)
config
.
session_init
=
SaverRestore
(
args
.
load
)
start_train
(
config
)
start_train
(
config
)
tensorpack/models/model_desc.py
View file @
5bc36930
...
@@ -61,7 +61,7 @@ class ModelDesc(object):
...
@@ -61,7 +61,7 @@ class ModelDesc(object):
but must have the same length
but must have the same length
"""
"""
def
get_lr_multipler
(
self
):
def
get_lr_multipl
i
er
(
self
):
"""
"""
Return a dict of {variable_regex: multiplier}
Return a dict of {variable_regex: multiplier}
"""
"""
...
...
tensorpack/train.py
View file @
5bc36930
...
@@ -7,6 +7,7 @@ import tensorflow as tf
...
@@ -7,6 +7,7 @@ import tensorflow as tf
from
itertools
import
count
from
itertools
import
count
import
copy
import
copy
import
argparse
import
argparse
import
re
import
tqdm
import
tqdm
from
models
import
ModelDesc
from
models
import
ModelDesc
...
@@ -59,13 +60,13 @@ class TrainConfig(object):
...
@@ -59,13 +60,13 @@ class TrainConfig(object):
self
.
nr_tower
=
int
(
kwargs
.
pop
(
'nr_tower'
,
1
))
self
.
nr_tower
=
int
(
kwargs
.
pop
(
'nr_tower'
,
1
))
assert
len
(
kwargs
)
==
0
,
'Unknown arguments: {}'
.
format
(
str
(
kwargs
.
keys
()))
assert
len
(
kwargs
)
==
0
,
'Unknown arguments: {}'
.
format
(
str
(
kwargs
.
keys
()))
def
average_grad
ient
s
(
tower_grads
):
def
average_grads
(
tower_grads
):
average_grads
=
[]
ret
=
[]
for
grad_and_vars
in
zip
(
*
tower_grads
):
for
grad_and_vars
in
zip
(
*
tower_grads
):
grad
=
tf
.
add_n
([
x
[
0
]
for
x
in
grad_and_vars
])
/
float
(
len
(
tower_grads
))
grad
=
tf
.
add_n
([
x
[
0
]
for
x
in
grad_and_vars
])
/
float
(
len
(
tower_grads
))
v
=
grad_and_vars
[
0
][
1
]
v
=
grad_and_vars
[
0
][
1
]
average_grads
.
append
((
grad
,
v
))
ret
.
append
((
grad
,
v
))
return
average_grads
return
ret
def
summary_grads
(
grads
):
def
summary_grads
(
grads
):
for
grad
,
var
in
grads
:
for
grad
,
var
in
grads
:
...
@@ -74,8 +75,22 @@ def summary_grads(grads):
...
@@ -74,8 +75,22 @@ def summary_grads(grads):
def
check_grads
(
grads
):
def
check_grads
(
grads
):
for
grad
,
var
in
grads
:
for
grad
,
var
in
grads
:
assert
grad
is
not
None
,
"Grad is None for variable {}"
.
format
(
var
.
name
)
tf
.
Assert
(
tf
.
reduce_all
(
tf
.
is_finite
(
var
)),
[
var
])
tf
.
Assert
(
tf
.
reduce_all
(
tf
.
is_finite
(
var
)),
[
var
])
def
scale_grads
(
grads
,
multiplier
):
ret
=
[]
for
grad
,
var
in
grads
:
varname
=
var
.
name
for
regex
,
val
in
multiplier
.
iteritems
():
if
re
.
search
(
regex
,
varname
):
logger
.
info
(
"Apply lr multiplier {} for {}"
.
format
(
val
,
varname
))
ret
.
append
((
grad
*
val
,
var
))
break
else
:
ret
.
append
((
grad
,
var
))
return
ret
def
start_train
(
config
):
def
start_train
(
config
):
"""
"""
Start training with the given config
Start training with the given config
...
@@ -120,15 +135,17 @@ def start_train(config):
...
@@ -120,15 +135,17 @@ def start_train(config):
for
k
in
coll_keys
:
# avoid repeating summary on multiple devices
for
k
in
coll_keys
:
# avoid repeating summary on multiple devices
del
tf
.
get_collection
(
k
)[:]
del
tf
.
get_collection
(
k
)[:]
tf
.
get_collection
(
k
)
.
extend
(
kept_summaries
[
k
])
tf
.
get_collection
(
k
)
.
extend
(
kept_summaries
[
k
])
grads
=
average_grad
ient
s
(
grads
)
grads
=
average_grads
(
grads
)
else
:
else
:
model_inputs
=
get_model_inputs
()
model_inputs
=
get_model_inputs
()
cost_var
=
model
.
get_cost
(
model_inputs
,
is_training
=
True
)
cost_var
=
model
.
get_cost
(
model_inputs
,
is_training
=
True
)
grads
=
config
.
optimizer
.
compute_gradients
(
cost_var
)
grads
=
config
.
optimizer
.
compute_gradients
(
cost_var
)
summary_grads
(
grads
)
check_grads
(
grads
)
avg_maintain_op
=
summary_moving_average
(
cost_var
)
avg_maintain_op
=
summary_moving_average
(
cost_var
)
check_grads
(
grads
)
grads
=
scale_grads
(
grads
,
model
.
get_lr_multiplier
())
summary_grads
(
grads
)
train_op
=
tf
.
group
(
train_op
=
tf
.
group
(
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
config
.
optimizer
.
apply_gradients
(
grads
,
get_global_step_var
()),
avg_maintain_op
)
avg_maintain_op
)
...
@@ -154,7 +171,7 @@ def start_train(config):
...
@@ -154,7 +171,7 @@ def start_train(config):
for
epoch
in
xrange
(
1
,
config
.
max_epoch
):
for
epoch
in
xrange
(
1
,
config
.
max_epoch
):
with
timed_operation
(
'epoch {}'
.
format
(
epoch
)):
with
timed_operation
(
'epoch {}'
.
format
(
epoch
)):
for
step
in
tqdm
.
trange
(
for
step
in
tqdm
.
trange
(
config
.
step_per_epoch
,
leave
=
True
,
mininterval
=
0.
2
):
config
.
step_per_epoch
,
leave
=
True
,
mininterval
=
0.
5
,
dynamic_ncols
=
True
):
if
coord
.
should_stop
():
if
coord
.
should_stop
():
return
return
sess
.
run
([
train_op
])
# faster since train_op return None
sess
.
run
([
train_op
])
# faster since train_op return None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment