Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
53571a78
Commit
53571a78
authored
Dec 26, 2015
by
ppwwyyxx
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
8c57fc1f
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
7 deletions
+5
-7
example_mnist.py
example_mnist.py
+5
-7
No files found.
example_mnist.py
View file @
53571a78
...
...
@@ -35,7 +35,7 @@ def get_model(input, label):
cost: scalar variable
"""
# use this dropout variable! it will be set to 1 at test time
keep_prob
=
tf
.
placeholder
(
tf
.
float32
,
name
=
'dropout_prob'
)
keep_prob
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
tuple
(),
name
=
'dropout_prob'
)
input
=
tf
.
reshape
(
input
,
[
-
1
,
IMAGE_SIZE
,
IMAGE_SIZE
,
1
])
conv0
=
Conv2D
(
'conv0'
,
input
,
out_channel
=
32
,
kernel_shape
=
5
,
...
...
@@ -60,19 +60,17 @@ def get_model(input, label):
y
=
one_hot
(
label
,
NUM_CLASS
)
cost
=
tf
.
nn
.
softmax_cross_entropy_with_logits
(
fc1
,
y
)
#logprob = logSoftmax(fc1)
#cost = tf.reduce_sum(-y * logprob, 1)
cost
=
tf
.
reduce_sum
(
cost
,
name
=
'cost'
)
tf
.
scalar_summary
(
cost
.
op
.
name
,
cost
)
return
prob
,
cost
def
main
():
dataset_train
=
Mnist
(
'train'
)
dataset_test
=
Mnist
(
'test'
)
dataset_train
=
BatchData
(
Mnist
(
'train'
),
batch_size
)
dataset_test
=
BatchData
(
Mnist
(
'test'
),
batch_size
,
remainder
=
True
)
extensions
=
[
OnehotClassificationValidation
(
BatchData
(
dataset_test
,
batch_size
,
remainder
=
True
)
,
dataset_test
,
prefix
=
'test'
,
period
=
2
),
PeriodicSaver
(
LOG_DIR
,
period
=
2
)
]
...
...
@@ -99,7 +97,7 @@ def main():
keep_prob
=
G
.
get_tensor_by_name
(
'dropout_prob:0'
)
with
sess
.
as_default
():
for
epoch
in
count
(
1
):
for
(
img
,
label
)
in
BatchData
(
dataset_train
,
batch_size
)
.
get_data
():
for
(
img
,
label
)
in
dataset_train
.
get_data
():
feed
=
{
input_var
:
img
,
label_var
:
label
,
keep_prob
:
0.5
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment