Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
4587944d
You need to sign in or sign up before continuing.
Commit
4587944d
authored
Sep 19, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
small fix
parent
fbf93d44
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
8 deletions
+8
-8
examples/OpenAIGym/train-atari.py
examples/OpenAIGym/train-atari.py
+8
-8
No files found.
examples/OpenAIGym/train-atari.py
View file @
4587944d
...
@@ -15,7 +15,6 @@ import six
...
@@ -15,7 +15,6 @@ import six
from
six.moves
import
queue
from
six.moves
import
queue
from
tensorpack
import
*
from
tensorpack
import
*
from
tensorpack.utils
import
*
from
tensorpack.utils.concurrency
import
*
from
tensorpack.utils.concurrency
import
*
from
tensorpack.utils.serialize
import
*
from
tensorpack.utils.serialize
import
*
from
tensorpack.utils.timer
import
*
from
tensorpack.utils.timer
import
*
...
@@ -68,10 +67,10 @@ class Model(ModelDesc):
...
@@ -68,10 +67,10 @@ class Model(ModelDesc):
def
_get_input_vars
(
self
):
def
_get_input_vars
(
self
):
assert
NUM_ACTIONS
is
not
None
assert
NUM_ACTIONS
is
not
None
return
[
InputVar
(
tf
.
float32
,
(
None
,)
+
IMAGE_SHAPE3
,
'state'
),
return
[
InputVar
(
tf
.
float32
,
(
None
,)
+
IMAGE_SHAPE3
,
'state'
),
InputVar
(
tf
.
int
32
,
(
None
,),
'action'
),
InputVar
(
tf
.
int
64
,
(
None
,),
'action'
),
InputVar
(
tf
.
float32
,
(
None
,),
'futurereward'
)
]
InputVar
(
tf
.
float32
,
(
None
,),
'futurereward'
)
]
def
_get_NN_prediction
(
self
,
image
,
is_training
):
def
_get_NN_prediction
(
self
,
image
):
image
=
image
/
255.0
image
=
image
/
255.0
with
argscope
(
Conv2D
,
nl
=
tf
.
nn
.
relu
):
with
argscope
(
Conv2D
,
nl
=
tf
.
nn
.
relu
):
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
5
)
l
=
Conv2D
(
'conv0'
,
image
,
out_channel
=
32
,
kernel_shape
=
5
)
...
@@ -88,21 +87,22 @@ class Model(ModelDesc):
...
@@ -88,21 +87,22 @@ class Model(ModelDesc):
value
=
FullyConnected
(
'fc-v'
,
l
,
1
,
nl
=
tf
.
identity
)
value
=
FullyConnected
(
'fc-v'
,
l
,
1
,
nl
=
tf
.
identity
)
return
policy
,
value
return
policy
,
value
def
_build_graph
(
self
,
inputs
,
is_training
):
def
_build_graph
(
self
,
inputs
):
state
,
action
,
futurereward
=
inputs
state
,
action
,
futurereward
=
inputs
policy
,
self
.
value
=
self
.
_get_NN_prediction
(
state
,
is_training
)
policy
,
self
.
value
=
self
.
_get_NN_prediction
(
state
)
self
.
value
=
tf
.
squeeze
(
self
.
value
,
[
1
],
name
=
'pred_value'
)
# (B,)
self
.
value
=
tf
.
squeeze
(
self
.
value
,
[
1
],
name
=
'pred_value'
)
# (B,)
self
.
logits
=
tf
.
nn
.
softmax
(
policy
,
name
=
'logits'
)
self
.
logits
=
tf
.
nn
.
softmax
(
policy
,
name
=
'logits'
)
expf
=
tf
.
get_variable
(
'explore_factor'
,
shape
=
[],
expf
=
tf
.
get_variable
(
'explore_factor'
,
shape
=
[],
initializer
=
tf
.
constant_initializer
(
1
),
trainable
=
False
)
initializer
=
tf
.
constant_initializer
(
1
),
trainable
=
False
)
logitsT
=
tf
.
nn
.
softmax
(
policy
*
expf
,
name
=
'logitsT'
)
logitsT
=
tf
.
nn
.
softmax
(
policy
*
expf
,
name
=
'logitsT'
)
is_training
=
get_current_tower_context
()
.
is_training
if
not
is_training
:
if
not
is_training
:
return
return
log_probs
=
tf
.
log
(
self
.
logits
+
1e-6
)
log_probs
=
tf
.
log
(
self
.
logits
+
1e-6
)
log_pi_a_given_s
=
tf
.
reduce_sum
(
log_pi_a_given_s
=
tf
.
reduce_sum
(
log_probs
*
tf
.
one_hot
(
tf
.
cast
(
action
,
tf
.
int64
),
NUM_ACTIONS
,
1.0
,
0.0
),
1
)
log_probs
*
tf
.
one_hot
(
action
,
NUM_ACTIONS
),
1
)
advantage
=
tf
.
sub
(
tf
.
stop_gradient
(
self
.
value
),
futurereward
,
name
=
'advantage'
)
advantage
=
tf
.
sub
(
tf
.
stop_gradient
(
self
.
value
),
futurereward
,
name
=
'advantage'
)
policy_loss
=
tf
.
reduce_sum
(
log_pi_a_given_s
*
advantage
,
name
=
'policy_loss'
)
policy_loss
=
tf
.
reduce_sum
(
log_pi_a_given_s
*
advantage
,
name
=
'policy_loss'
)
xentropy_loss
=
tf
.
reduce_sum
(
xentropy_loss
=
tf
.
reduce_sum
(
...
@@ -110,7 +110,7 @@ class Model(ModelDesc):
...
@@ -110,7 +110,7 @@ class Model(ModelDesc):
value_loss
=
tf
.
nn
.
l2_loss
(
self
.
value
-
futurereward
,
name
=
'value_loss'
)
value_loss
=
tf
.
nn
.
l2_loss
(
self
.
value
-
futurereward
,
name
=
'value_loss'
)
pred_reward
=
tf
.
reduce_mean
(
self
.
value
,
name
=
'predict_reward'
)
pred_reward
=
tf
.
reduce_mean
(
self
.
value
,
name
=
'predict_reward'
)
advantage
=
tf
.
sqrt
(
tf
.
reduce_mean
(
tf
.
square
(
advantage
))
,
name
=
'rms_advantage'
)
advantage
=
symbf
.
rms
(
advantage
,
name
=
'rms_advantage'
)
summary
.
add_moving_summary
(
policy_loss
,
xentropy_loss
,
value_loss
,
pred_reward
,
advantage
)
summary
.
add_moving_summary
(
policy_loss
,
xentropy_loss
,
value_loss
,
pred_reward
,
advantage
)
entropy_beta
=
tf
.
get_variable
(
'entropy_beta'
,
shape
=
[],
entropy_beta
=
tf
.
get_variable
(
'entropy_beta'
,
shape
=
[],
initializer
=
tf
.
constant_initializer
(
0.01
),
trainable
=
False
)
initializer
=
tf
.
constant_initializer
(
0.01
),
trainable
=
False
)
...
@@ -139,7 +139,7 @@ class MySimulatorMaster(SimulatorMaster, Callback):
...
@@ -139,7 +139,7 @@ class MySimulatorMaster(SimulatorMaster, Callback):
def
_on_state
(
self
,
state
,
ident
):
def
_on_state
(
self
,
state
,
ident
):
def
cb
(
outputs
):
def
cb
(
outputs
):
distrib
,
value
=
outputs
.
result
()
distrib
,
value
=
outputs
.
result
()
assert
np
.
all
(
np
.
isfinite
(
distrib
))
assert
np
.
all
(
np
.
isfinite
(
distrib
))
,
distrib
action
=
np
.
random
.
choice
(
len
(
distrib
),
p
=
distrib
)
action
=
np
.
random
.
choice
(
len
(
distrib
),
p
=
distrib
)
client
=
self
.
clients
[
ident
]
client
=
self
.
clients
[
ident
]
client
.
memory
.
append
(
TransitionExperience
(
state
,
action
,
None
,
value
=
value
))
client
.
memory
.
append
(
TransitionExperience
(
state
,
action
,
None
,
value
=
value
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment