Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
42f2c644
Commit
42f2c644
authored
Aug 19, 2017
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
share the implementation of crop/resize augmentors.
parent
77cf6145
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
117 additions
and
89 deletions
+117
-89
tensorpack/dataflow/imgaug/crop.py
tensorpack/dataflow/imgaug/crop.py
+16
-39
tensorpack/dataflow/imgaug/misc.py
tensorpack/dataflow/imgaug/misc.py
+14
-50
tensorpack/dataflow/imgaug/transform.py
tensorpack/dataflow/imgaug/transform.py
+87
-0
No files found.
tensorpack/dataflow/imgaug/crop.py
View file @
42f2c644
...
...
@@ -2,17 +2,20 @@
# File: crop.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
from
six.moves
import
range
import
numpy
as
np
from
.base
import
ImageAugmentor
from
...utils.rect
import
IntBox
from
...utils.develop
import
log_deprecated
from
...utils.argtools
import
shape2d
from
.transform
import
TransformAugmentorBase
,
CropTransform
from
six.moves
import
range
import
numpy
as
np
__all__
=
[
'RandomCrop'
,
'CenterCrop'
,
'RandomCropAroundBox'
,
'RandomCropRandomShape'
]
class
RandomCrop
(
ImageAugmentor
):
class
RandomCrop
(
TransformAugmentorBase
):
""" Randomly crop the image into a smaller one """
def
__init__
(
self
,
crop_shape
):
...
...
@@ -32,20 +35,10 @@ class RandomCrop(ImageAugmentor):
h0
=
0
if
diffh
==
0
else
self
.
rng
.
randint
(
diffh
)
diffw
=
orig_shape
[
1
]
-
self
.
crop_shape
[
1
]
w0
=
0
if
diffw
==
0
else
self
.
rng
.
randint
(
diffw
)
return
(
h0
,
w0
)
def
_augment
(
self
,
img
,
param
):
h0
,
w0
=
param
return
img
[
h0
:
h0
+
self
.
crop_shape
[
0
],
w0
:
w0
+
self
.
crop_shape
[
1
]]
def
_augment_coords
(
self
,
coords
,
param
):
h0
,
w0
=
param
coords
[:,
0
]
=
coords
[:,
0
]
-
w0
coords
[:,
1
]
=
coords
[:,
1
]
-
h0
return
coords
return
CropTransform
(
h0
,
w0
,
self
.
crop_shape
[
0
],
self
.
crop_shape
[
1
])
class
CenterCrop
(
ImageAugmentor
):
class
CenterCrop
(
TransformAugmentorBase
):
""" Crop the image at the center"""
def
__init__
(
self
,
crop_shape
):
...
...
@@ -60,17 +53,7 @@ class CenterCrop(ImageAugmentor):
orig_shape
=
img
.
shape
h0
=
int
((
orig_shape
[
0
]
-
self
.
crop_shape
[
0
])
*
0.5
)
w0
=
int
((
orig_shape
[
1
]
-
self
.
crop_shape
[
1
])
*
0.5
)
return
(
h0
,
w0
)
def
_augment
(
self
,
img
,
param
):
h0
,
w0
=
param
return
img
[
h0
:
h0
+
self
.
crop_shape
[
0
],
w0
:
w0
+
self
.
crop_shape
[
1
]]
def
_augment_coords
(
self
,
coords
,
param
):
h0
,
w0
=
param
coords
[:,
0
]
=
coords
[:,
0
]
-
w0
coords
[:,
1
]
=
coords
[:,
1
]
-
h0
return
coords
return
CropTransform
(
h0
,
w0
,
self
.
crop_shape
[
0
],
self
.
crop_shape
[
1
])
def
perturb_BB
(
image_shape
,
bb
,
max_perturb_pixel
,
...
...
@@ -108,7 +91,7 @@ def perturb_BB(image_shape, bb, max_perturb_pixel,
return
bb
# TODO shouldn't include strange augmentors like this.
# TODO
deprecated.
shouldn't include strange augmentors like this.
class
RandomCropAroundBox
(
ImageAugmentor
):
"""
Crop a box around a bounding box by some random perturbation.
...
...
@@ -122,6 +105,10 @@ class RandomCropAroundBox(ImageAugmentor):
max_aspect_ratio_diff (float): keep aspect ratio difference within the range
"""
super
(
RandomCropAroundBox
,
self
)
.
__init__
()
log_deprecated
(
"RandomCropAroundBox"
,
"It's neither common nor well-defined. Please implement something by yourself."
,
"2017-11-30"
)
self
.
_init
(
locals
())
def
_get_augment_params
(
self
,
img
):
...
...
@@ -141,7 +128,7 @@ class RandomCropAroundBox(ImageAugmentor):
return
coords
class
RandomCropRandomShape
(
ImageAugmentor
):
class
RandomCropRandomShape
(
TransformAugmentorBase
):
""" Random crop with a random shape"""
def
__init__
(
self
,
wmin
,
hmin
,
...
...
@@ -169,17 +156,7 @@ class RandomCropRandomShape(ImageAugmentor):
assert
diffh
>=
0
and
diffw
>=
0
y0
=
0
if
diffh
==
0
else
self
.
rng
.
randint
(
diffh
)
x0
=
0
if
diffw
==
0
else
self
.
rng
.
randint
(
diffw
)
return
(
y0
,
x0
,
h
,
w
)
def
_augment
(
self
,
img
,
param
):
y0
,
x0
,
h
,
w
=
param
return
img
[
y0
:
y0
+
h
,
x0
:
x0
+
w
]
def
_augment_coords
(
self
,
coords
,
param
):
y0
,
x0
,
_
,
_
=
param
coords
[:,
0
]
=
coords
[:,
0
]
-
x0
coords
[:,
1
]
=
coords
[:,
1
]
-
y0
return
coords
return
CropTransform
(
y0
,
x0
,
h
,
w
)
if
__name__
==
'__main__'
:
...
...
tensorpack/dataflow/imgaug/misc.py
View file @
42f2c644
...
...
@@ -2,11 +2,13 @@
# File: misc.py
# Author: Yuxin Wu <ppwwyyxx@gmail.com>
import
numpy
as
np
import
cv2
from
.base
import
ImageAugmentor
from
...utils
import
logger
from
...utils.argtools
import
shape2d
import
numpy
as
np
import
cv2
from
.transform
import
ResizeTransform
,
TransformAugmentorBase
__all__
=
[
'Flip'
,
'Resize'
,
'RandomResize'
,
'ResizeShortestEdge'
,
'Transpose'
]
...
...
@@ -59,7 +61,7 @@ class Flip(ImageAugmentor):
return
coords
class
Resize
(
ImageAugmentor
):
class
Resize
(
TransformAugmentorBase
):
""" Resize image to a target size"""
def
__init__
(
self
,
shape
,
interp
=
cv2
.
INTER_LINEAR
):
...
...
@@ -72,25 +74,12 @@ class Resize(ImageAugmentor):
self
.
_init
(
locals
())
def
_get_augment_params
(
self
,
img
):
h
,
w
=
img
.
shape
[:
2
]
return
(
h
,
w
)
def
_augment
(
self
,
img
,
_
):
ret
=
cv2
.
resize
(
img
,
self
.
shape
[::
-
1
],
interpolation
=
self
.
interp
)
if
img
.
ndim
==
3
and
ret
.
ndim
==
2
:
ret
=
ret
[:,
:,
np
.
newaxis
]
return
ret
return
ResizeTransform
(
img
.
shape
[
0
],
img
.
shape
[
1
],
self
.
shape
[
0
],
self
.
shape
[
1
],
self
.
interp
)
def
_augment_coords
(
self
,
coords
,
param
):
h
,
w
=
param
coords
[:,
0
]
=
coords
[:,
0
]
*
(
self
.
shape
[
1
]
*
1.0
/
w
)
coords
[:,
1
]
=
coords
[:,
1
]
*
(
self
.
shape
[
0
]
*
1.0
/
h
)
return
coords
class
ResizeShortestEdge
(
ImageAugmentor
):
class
ResizeShortestEdge
(
TransformAugmentorBase
):
"""
Resize the shortest edge to a certain number while
keeping the aspect ratio.
...
...
@@ -111,23 +100,11 @@ class ResizeShortestEdge(ImageAugmentor):
newh
,
neww
=
self
.
size
,
int
(
scale
*
w
)
else
:
newh
,
neww
=
int
(
scale
*
h
),
self
.
size
return
(
h
,
w
,
newh
,
neww
)
def
_augment
(
self
,
img
,
param
):
_
,
_
,
newh
,
neww
=
param
ret
=
cv2
.
resize
(
img
,
(
neww
,
newh
),
interpolation
=
self
.
interp
)
if
img
.
ndim
==
3
and
ret
.
ndim
==
2
:
ret
=
ret
[:,
:,
np
.
newaxis
]
return
ret
def
_augment_coords
(
self
,
coords
,
param
):
h
,
w
,
newh
,
neww
=
param
coords
[:,
0
]
=
coords
[:,
0
]
*
(
neww
*
1.0
/
w
)
coords
[:,
1
]
=
coords
[:,
1
]
*
(
newh
*
1.0
/
h
)
return
coords
return
ResizeTransform
(
h
,
w
,
newh
,
neww
,
self
.
interp
)
class
RandomResize
(
ImageAugmentor
):
class
RandomResize
(
TransformAugmentorBase
):
""" Randomly rescale width and height of the image."""
def
__init__
(
self
,
xrange
,
yrange
,
minimum
=
(
0
,
0
),
aspect_ratio_thres
=
0.15
,
...
...
@@ -187,22 +164,9 @@ class RandomResize(ImageAugmentor):
cnt
+=
1
if
cnt
>
50
:
logger
.
warn
(
"RandomResize failed to augment an image"
)
return
(
h
,
w
,
h
,
w
)
return
ResizeTransform
(
h
,
w
,
h
,
w
,
self
.
interp
)
continue
return
(
h
,
w
,
int
(
destY
),
int
(
destX
))
def
_augment
(
self
,
img
,
param
):
_
,
_
,
newh
,
neww
=
param
ret
=
cv2
.
resize
(
img
,
(
neww
,
newh
),
interpolation
=
self
.
interp
)
if
img
.
ndim
==
3
and
ret
.
ndim
==
2
:
ret
=
ret
[:,
:,
np
.
newaxis
]
return
ret
def
_augment_coords
(
self
,
coords
,
param
):
h
,
w
,
newh
,
neww
=
param
coords
[:,
0
]
=
coords
[:,
0
]
*
(
neww
*
1.0
/
w
)
coords
[:,
1
]
=
coords
[:,
1
]
*
(
newh
*
1.0
/
h
)
return
coords
return
ResizeTransform
(
h
,
w
,
int
(
destY
),
int
(
destX
),
self
.
interp
)
class
Transpose
(
ImageAugmentor
):
...
...
tensorpack/dataflow/imgaug/transform.py
0 → 100644
View file @
42f2c644
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: transform.py
from
abc
import
abstractmethod
,
ABCMeta
import
six
import
cv2
import
numpy
as
np
from
.base
import
ImageAugmentor
__all__
=
[]
class
TransformAugmentorBase
(
ImageAugmentor
):
"""
Base class of augmentors which use :class:`ImageTransform`
for the actual implementation of the transformations.
It assumes that :meth:`_get_augment_params` should
return a :class:`ImageTransform` instance, and it will use
this instance to augment both image and coordinates.
"""
def
_augment
(
self
,
img
,
t
):
return
t
.
apply_image
(
img
)
def
_augment_coords
(
self
,
coords
,
t
):
return
t
.
apply_coords
(
coords
)
@
six
.
add_metaclass
(
ABCMeta
)
class
ImageTransform
(
object
):
"""
A deterministic image transformation, used to implement
the (probably random) augmentors.
This way the deterministic part
(the actual transformation which may be common between augmentors)
can be separated from the random part
(the random policy which is different between augmentors).
"""
def
_init
(
self
,
params
=
None
):
if
params
:
for
k
,
v
in
params
.
items
():
if
k
!=
'self'
:
setattr
(
self
,
k
,
v
)
@
abstractmethod
def
apply_image
(
self
,
img
):
pass
@
abstractmethod
def
apply_coords
(
self
,
coords
):
pass
class
ResizeTransform
(
ImageTransform
):
def
__init__
(
self
,
h
,
w
,
newh
,
neww
,
interp
):
self
.
_init
(
locals
())
def
apply_image
(
self
,
img
):
assert
img
.
shape
[:
2
]
==
(
self
.
h
,
self
.
w
)
ret
=
cv2
.
resize
(
img
,
(
self
.
neww
,
self
.
newh
),
interpolation
=
self
.
interp
)
if
img
.
ndim
==
3
and
ret
.
ndim
==
2
:
ret
=
ret
[:,
:,
np
.
newaxis
]
return
ret
def
apply_coords
(
self
,
coords
):
coords
[:,
0
]
=
coords
[:,
0
]
*
(
self
.
neww
*
1.0
/
self
.
w
)
coords
[:,
1
]
=
coords
[:,
1
]
*
(
self
.
newh
*
1.0
/
self
.
h
)
return
coords
class
CropTransform
(
ImageTransform
):
def
__init__
(
self
,
h0
,
w0
,
h
,
w
):
self
.
_init
(
locals
())
def
apply_image
(
self
,
img
):
return
img
[
self
.
h0
:
self
.
h0
+
self
.
h
,
self
.
w0
:
self
.
w0
+
self
.
w
]
def
apply_coords
(
self
,
coords
):
coords
[:,
0
]
-=
self
.
w0
coords
[:,
1
]
-=
self
.
h0
return
coords
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment