Commit 2d5984db authored by Yuxin Wu's avatar Yuxin Wu

rename & update readme

parent 062790c4
......@@ -4,7 +4,7 @@ Neural Network Toolbox on TensorFlow
[![Build Status](https://travis-ci.org/ppwwyyxx/tensorpack.svg?branch=master)](https://travis-ci.org/ppwwyyxx/tensorpack)
[![badge](https://readthedocs.org/projects/pip/badge/?version=latest)](http://tensorpack.readthedocs.io/en/latest/index.html)
Tutorials are not fully finished. See some [examples](examples) to learn about the framework:
Tutorials are not finished. See some [examples](examples) to learn about the framework:
### Vision:
+ [DoReFa-Net: train binary / low-bitwidth CNN on ImageNet](examples/DoReFa-Net)
......
......@@ -16,7 +16,7 @@ To train, just run:
```bash
./imagenet-resnet.py --data /path/to/original/ILSVRC --gpu 0,1,2,3 -d 18
```
The speed is 1860 samples/s on 4 TitanX Pascal, and 1160 it/s on 4 old TitanX, provided that your data is fast
The speed is 1860 samples/s on 4 TitanX Pascal, and 1160 samples/s on 4 old TitanX, if your data is fast
enough. See the [tutorial](http://tensorpack.readthedocs.io/en/latest/tutorial/efficient-dataflow.html) on how to speed up your data.
![imagenet](imagenet-resnet.png)
......
......@@ -98,7 +98,7 @@ class CosineModel(SiameseModel):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
tf.identity(self.embed(inputs[0]), name="emb")
cost = symbf.cosine_loss(x, y, label, scope="loss")
cost = symbf.siamese_cosine_loss(x, y, label, scope="loss")
self.cost = tf.identity(cost, name="cost")
add_moving_summary(self.cost)
......
......@@ -257,7 +257,7 @@ def contrastive_loss(left, right, y, margin, extra=False, scope="constrastive_lo
return loss
def cosine_loss(left, right, y, scope="cosine_loss"):
def siamese_cosine_loss(left, right, y, scope="cosine_loss"):
r"""Loss for Siamese networks (cosine version).
Same as :func:`contrastive_loss` but with different similarity measurement.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment