@@ -5,37 +5,47 @@ Training examples with __reproducible__ and meaningful performance.
...
@@ -5,37 +5,47 @@ Training examples with __reproducible__ and meaningful performance.
## Getting Started:
## Getting Started:
+[An illustrative mnist example with explanation of the framework](mnist-convnet.py)
+[An illustrative mnist example with explanation of the framework](mnist-convnet.py)
+ The same mnist example using [tf-slim](mnist-tfslim.py), [Keras](mnist-keras.py), and [with weights visualizations](mnist-visualizations.py)
+ The same mnist example using [tf-slim](mnist-tfslim.py), [Keras layers](mnist-keras.py), [Higher-level Keras](mnist-keras-v2.py) and [with weights visualizations](mnist-visualizations.py)
+[A tiny SVHN ConvNet with 97.8% accuracy](svhn-digit-convnet.py)
+[A boilerplate file to start with, for your own tasks](boilerplate.py)
+[A boilerplate file to start with, for your own tasks](boilerplate.py)
## Vision:
## Vision:
+[A tiny SVHN ConvNet with 97.8% accuracy](svhn-digit-convnet.py)
| Name | Performance |
+ Train [ResNet](ResNet) and [ShuffleNet](ShuffleNet) on ImageNet
| --- | --- |
+[Train ResNet50-Faster-RCNN on COCO](FasterRCNN)
| Train [ResNet](ResNet) and [ShuffleNet](ShuffleNet) on ImageNet | reproduce paper |
+[DoReFa-Net: training binary / low-bitwidth CNN on ImageNet](DoReFa-Net)
| [Train ResNet50-Faster-RCNN on COCO](FasterRCNN) | reproduce paper |
+[Generative Adversarial Network(GAN) variants](GAN), including DCGAN, InfoGAN, Conditional GAN, WGAN, BEGAN, DiscoGAN, Image to Image, CycleGAN
| [DoReFa-Net: training binary / low-bitwidth CNN on ImageNet](DoReFa-Net) | reproduce paper |