Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
266ac578
Commit
266ac578
authored
Aug 22, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update more gym models
parent
4eb95a5d
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
3 deletions
+18
-3
examples/DisturbLabel/README.md
examples/DisturbLabel/README.md
+2
-2
examples/OpenAIGym/README.md
examples/OpenAIGym/README.md
+16
-1
No files found.
examples/DisturbLabel/README.md
View file @
266ac578
...
...
@@ -15,8 +15,8 @@ Experiements were repeated 15 times for p=0, 10 times for p=0.02 & 0.05, and 5 t
of p. All experiements run for 100 epochs, with lr decay, which are enough for them to converge.
I suppose the disturb method works as a random noise that could prevent SGD from getting stuck, if
training data are too easy or too few.
It didn't work for
harder problems such as SVHN:
training data are too easy
to fit
or too few.
The method didn't work for slightly
harder problems such as SVHN:

...
...
examples/OpenAIGym/README.md
View file @
266ac578
...
...
@@ -15,20 +15,35 @@ Models are available for the following gym atari environments (click links for v
+
[
Asteroids-v0
](
https://gym.openai.com/evaluations/eval_8eHKsRL4RzuZEq9AOLZA
)
+
[
Atlantis-v0
](
https://gym.openai.com/evaluations/eval_Z1B3d7A1QCaQk1HpO1Rg
)
+
[
BattleZone-v0
](
https://gym.openai.com/evaluations/eval_SoLit2bR1qmFoC0AsJF6Q
)
+
[
BankHeist-v0
](
https://gym.openai.com/evaluations/eval_hifoaxFTIuLlPd38BjnOw
)
+
[
BeamRider-v0
](
https://gym.openai.com/evaluations/eval_KuOYumrjQjixwL0spG0iCA
)
+
[
Breakout-v0
](
https://gym.openai.com/evaluations/eval_L55gczPrQJamMGihq9tzA
)
+
[
Carnival-v0
](
https://gym.openai.com/evaluations/eval_xJSOlo2lSWaH1wHEOX5vw
)
+
[
ChopperCommand-v0
](
https://gym.openai.com/evaluations/eval_tYVKyh7wQieRIKgEvVaCuw
)
+
[
CrazyClimber-v0
](
https://gym.openai.com/evaluations/eval_bKeBg0QwSgOm6A0I0wDhSw
)
+
[
DemonAttack-v0
](
https://gym.openai.com/evaluations/eval_tt21vVaRCKYzWFcg1Kw
)
+
[
DoubleDunk-v0
](
https://gym.openai.com/evaluations/eval_FI1GpF4TlCuf29KccTpQ
)
+
[
ElevatorAction-v0
](
https://gym.openai.com/evaluations/eval_SqeAouMvR0icRivx2xprZg
)
+
[
FishingDerby-v0
](
https://gym.openai.com/evaluations/eval_pPLCnFXsTVaayrIboDOs0g
)
+
[
JourneyEscape
](
https://gym.openai.com/evaluations/eval_S9nQuXLRSu7S5x21Ay6AA
)
+
[
Gravitar-v0
](
https://gym.openai.com/evaluations/eval_QudrLdVmTpK9HF5juaZr0w
)
+
[
IceHockey-v0
](
https://gym.openai.com/evaluations/eval_8oWCTwwGS7OUTTGRwBPQkQ
)
+
[
JourneyEscape-v0
](
https://gym.openai.com/evaluations/eval_S9nQuXLRSu7S5x21Ay6AA
)
+
[
Krull-v0
](
https://gym.openai.com/evaluations/eval_dfOS2WzhTh6sn1FuPS9HA
)
+
[
KungFuMaster-v0
](
https://gym.openai.com/evaluations/eval_vNWDShYTRC0MhfIybeUYg
)
+
[
MsPacman-v0
](
https://gym.openai.com/evaluations/eval_kpL9bSsS4GXsYb9HuEfew
)
+
[
Pooyan-v0
](
https://gym.openai.com/evaluations/eval_UXFVI34MSAuNTtjZcK8N0A
)
+
[
Pong-v0
](
https://gym.openai.com/evaluations/eval_8L7SV59nSW6GGbbP3N4G6w
)
+
[
Phoenix-v0
](
https://gym.openai.com/evaluations/eval_uzUruiB3RRKUMvJIxvEzYA
)
+
[
Qbert-v0
](
https://gym.openai.com/evaluations/eval_wekCJkrWQm9NrOUzltXg
)
+
[
Riverraid-v0
](
https://gym.openai.com/evaluations/eval_OU4x3DkTfm4uaXy6CIaXg
)
+
[
RoadRunner-v0
](
https://gym.openai.com/evaluations/eval_wINKQTwxT9ipydHOXBhg
)
+
[
Robotank-v0
](
https://gym.openai.com/evaluations/eval_Gr5c0ld3QACLDPQrGdzbiw
)
+
[
Seaquest-v0
](
https://gym.openai.com/evaluations/eval_N2624y3NSJWrOgoMSpOi4w
)
+
[
Tennis-v0
](
https://gym.openai.com/evaluations/eval_gDjJD0MMS1yLm1T0hdqI4g
)
+
[
UpNDown-v0
](
https://gym.openai.com/evaluations/eval_KmkvMJkxQFSED20wFUMdIA
)
+
[
VideoPinball-v0
](
https://gym.openai.com/evaluations/eval_PWwzNhVFR2CxjYvEsPfT1g
)
+
[
WizardOfWor-v0
](
https://gym.openai.com/evaluations/eval_1oGQhphpQhmzEMIYRrrp0A
)
+
[
Zaxxon-v0
](
https://gym.openai.com/evaluations/eval_TIQ102EwTrHrOyve2RGfg
)
Note that atari game settings in gym are quite different from DeepMind papers, so the scores are not comparable. The most notable differences are:
+
In gym, each action is randomly repeated 2~4 times.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment