Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
266ac578
Commit
266ac578
authored
Aug 22, 2016
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update more gym models
parent
4eb95a5d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
3 deletions
+18
-3
examples/DisturbLabel/README.md
examples/DisturbLabel/README.md
+2
-2
examples/OpenAIGym/README.md
examples/OpenAIGym/README.md
+16
-1
No files found.
examples/DisturbLabel/README.md
View file @
266ac578
...
@@ -15,8 +15,8 @@ Experiements were repeated 15 times for p=0, 10 times for p=0.02 & 0.05, and 5 t
...
@@ -15,8 +15,8 @@ Experiements were repeated 15 times for p=0, 10 times for p=0.02 & 0.05, and 5 t
of p. All experiements run for 100 epochs, with lr decay, which are enough for them to converge.
of p. All experiements run for 100 epochs, with lr decay, which are enough for them to converge.
I suppose the disturb method works as a random noise that could prevent SGD from getting stuck, if
I suppose the disturb method works as a random noise that could prevent SGD from getting stuck, if
training data are too easy or too few.
training data are too easy
to fit
or too few.
It didn't work for
harder problems such as SVHN:
The method didn't work for slightly
harder problems such as SVHN:


...
...
examples/OpenAIGym/README.md
View file @
266ac578
...
@@ -15,20 +15,35 @@ Models are available for the following gym atari environments (click links for v
...
@@ -15,20 +15,35 @@ Models are available for the following gym atari environments (click links for v
+
[
Asteroids-v0
](
https://gym.openai.com/evaluations/eval_8eHKsRL4RzuZEq9AOLZA
)
+
[
Asteroids-v0
](
https://gym.openai.com/evaluations/eval_8eHKsRL4RzuZEq9AOLZA
)
+
[
Atlantis-v0
](
https://gym.openai.com/evaluations/eval_Z1B3d7A1QCaQk1HpO1Rg
)
+
[
Atlantis-v0
](
https://gym.openai.com/evaluations/eval_Z1B3d7A1QCaQk1HpO1Rg
)
+
[
BattleZone-v0
](
https://gym.openai.com/evaluations/eval_SoLit2bR1qmFoC0AsJF6Q
)
+
[
BattleZone-v0
](
https://gym.openai.com/evaluations/eval_SoLit2bR1qmFoC0AsJF6Q
)
+
[
BankHeist-v0
](
https://gym.openai.com/evaluations/eval_hifoaxFTIuLlPd38BjnOw
)
+
[
BeamRider-v0
](
https://gym.openai.com/evaluations/eval_KuOYumrjQjixwL0spG0iCA
)
+
[
BeamRider-v0
](
https://gym.openai.com/evaluations/eval_KuOYumrjQjixwL0spG0iCA
)
+
[
Breakout-v0
](
https://gym.openai.com/evaluations/eval_L55gczPrQJamMGihq9tzA
)
+
[
Breakout-v0
](
https://gym.openai.com/evaluations/eval_L55gczPrQJamMGihq9tzA
)
+
[
Carnival-v0
](
https://gym.openai.com/evaluations/eval_xJSOlo2lSWaH1wHEOX5vw
)
+
[
ChopperCommand-v0
](
https://gym.openai.com/evaluations/eval_tYVKyh7wQieRIKgEvVaCuw
)
+
[
CrazyClimber-v0
](
https://gym.openai.com/evaluations/eval_bKeBg0QwSgOm6A0I0wDhSw
)
+
[
CrazyClimber-v0
](
https://gym.openai.com/evaluations/eval_bKeBg0QwSgOm6A0I0wDhSw
)
+
[
DemonAttack-v0
](
https://gym.openai.com/evaluations/eval_tt21vVaRCKYzWFcg1Kw
)
+
[
DemonAttack-v0
](
https://gym.openai.com/evaluations/eval_tt21vVaRCKYzWFcg1Kw
)
+
[
DoubleDunk-v0
](
https://gym.openai.com/evaluations/eval_FI1GpF4TlCuf29KccTpQ
)
+
[
DoubleDunk-v0
](
https://gym.openai.com/evaluations/eval_FI1GpF4TlCuf29KccTpQ
)
+
[
ElevatorAction-v0
](
https://gym.openai.com/evaluations/eval_SqeAouMvR0icRivx2xprZg
)
+
[
ElevatorAction-v0
](
https://gym.openai.com/evaluations/eval_SqeAouMvR0icRivx2xprZg
)
+
[
FishingDerby-v0
](
https://gym.openai.com/evaluations/eval_pPLCnFXsTVaayrIboDOs0g
)
+
[
FishingDerby-v0
](
https://gym.openai.com/evaluations/eval_pPLCnFXsTVaayrIboDOs0g
)
+
[
JourneyEscape
](
https://gym.openai.com/evaluations/eval_S9nQuXLRSu7S5x21Ay6AA
)
+
[
Gravitar-v0
](
https://gym.openai.com/evaluations/eval_QudrLdVmTpK9HF5juaZr0w
)
+
[
IceHockey-v0
](
https://gym.openai.com/evaluations/eval_8oWCTwwGS7OUTTGRwBPQkQ
)
+
[
JourneyEscape-v0
](
https://gym.openai.com/evaluations/eval_S9nQuXLRSu7S5x21Ay6AA
)
+
[
Krull-v0
](
https://gym.openai.com/evaluations/eval_dfOS2WzhTh6sn1FuPS9HA
)
+
[
KungFuMaster-v0
](
https://gym.openai.com/evaluations/eval_vNWDShYTRC0MhfIybeUYg
)
+
[
MsPacman-v0
](
https://gym.openai.com/evaluations/eval_kpL9bSsS4GXsYb9HuEfew
)
+
[
Pooyan-v0
](
https://gym.openai.com/evaluations/eval_UXFVI34MSAuNTtjZcK8N0A
)
+
[
Pong-v0
](
https://gym.openai.com/evaluations/eval_8L7SV59nSW6GGbbP3N4G6w
)
+
[
Pong-v0
](
https://gym.openai.com/evaluations/eval_8L7SV59nSW6GGbbP3N4G6w
)
+
[
Phoenix-v0
](
https://gym.openai.com/evaluations/eval_uzUruiB3RRKUMvJIxvEzYA
)
+
[
Qbert-v0
](
https://gym.openai.com/evaluations/eval_wekCJkrWQm9NrOUzltXg
)
+
[
Qbert-v0
](
https://gym.openai.com/evaluations/eval_wekCJkrWQm9NrOUzltXg
)
+
[
Riverraid-v0
](
https://gym.openai.com/evaluations/eval_OU4x3DkTfm4uaXy6CIaXg
)
+
[
RoadRunner-v0
](
https://gym.openai.com/evaluations/eval_wINKQTwxT9ipydHOXBhg
)
+
[
Robotank-v0
](
https://gym.openai.com/evaluations/eval_Gr5c0ld3QACLDPQrGdzbiw
)
+
[
Seaquest-v0
](
https://gym.openai.com/evaluations/eval_N2624y3NSJWrOgoMSpOi4w
)
+
[
Seaquest-v0
](
https://gym.openai.com/evaluations/eval_N2624y3NSJWrOgoMSpOi4w
)
+
[
Tennis-v0
](
https://gym.openai.com/evaluations/eval_gDjJD0MMS1yLm1T0hdqI4g
)
+
[
Tennis-v0
](
https://gym.openai.com/evaluations/eval_gDjJD0MMS1yLm1T0hdqI4g
)
+
[
UpNDown-v0
](
https://gym.openai.com/evaluations/eval_KmkvMJkxQFSED20wFUMdIA
)
+
[
UpNDown-v0
](
https://gym.openai.com/evaluations/eval_KmkvMJkxQFSED20wFUMdIA
)
+
[
VideoPinball-v0
](
https://gym.openai.com/evaluations/eval_PWwzNhVFR2CxjYvEsPfT1g
)
+
[
VideoPinball-v0
](
https://gym.openai.com/evaluations/eval_PWwzNhVFR2CxjYvEsPfT1g
)
+
[
WizardOfWor-v0
](
https://gym.openai.com/evaluations/eval_1oGQhphpQhmzEMIYRrrp0A
)
+
[
Zaxxon-v0
](
https://gym.openai.com/evaluations/eval_TIQ102EwTrHrOyve2RGfg
)
Note that atari game settings in gym are quite different from DeepMind papers, so the scores are not comparable. The most notable differences are:
Note that atari game settings in gym are quite different from DeepMind papers, so the scores are not comparable. The most notable differences are:
+
In gym, each action is randomly repeated 2~4 times.
+
In gym, each action is randomly repeated 2~4 times.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment