Commit 25583e52 authored by Yuxin Wu's avatar Yuxin Wu

update example notes

parent cc8452e5
...@@ -9,7 +9,7 @@ You can train them and reproduce the performance... not just to see how to write ...@@ -9,7 +9,7 @@ You can train them and reproduce the performance... not just to see how to write
+ [InceptionV3 on ImageNet](examples/Inception/inceptionv3.py) + [InceptionV3 on ImageNet](examples/Inception/inceptionv3.py)
+ [Fully-convolutional Network for Holistically-Nested Edge Detection(HED)](examples/HED) + [Fully-convolutional Network for Holistically-Nested Edge Detection(HED)](examples/HED)
+ [Spatial Transformer Network on MNIST addition](examples/SpatialTransformer) + [Spatial Transformer Network on MNIST addition](examples/SpatialTransformer)
+ [Generative Adversarial Network(GAN) variants](examples/GAN) + [Generative Adversarial Network(GAN) variants (DCGAN,Image2Image,InfoGAN)](examples/GAN)
+ [Deep Q-Network(DQN) variants on Atari games](examples/Atari2600) + [Deep Q-Network(DQN) variants on Atari games](examples/Atari2600)
+ [Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym](examples/OpenAIGym) + [Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym](examples/OpenAIGym)
+ [char-rnn language model](examples/char-rnn) + [char-rnn language model](examples/char-rnn)
......
...@@ -3,14 +3,23 @@ ...@@ -3,14 +3,23 @@
Training examples with __reproducible__ and meaningful performance. Training examples with __reproducible__ and meaningful performance.
## Vision:
+ [An illustrative mnist example with explanation of the framework](mnist-convnet.py) + [An illustrative mnist example with explanation of the framework](mnist-convnet.py)
+ [A tiny SVHN ConvNet with 97.8% accuracy](svhn-digit-convnet.py) + [A tiny SVHN ConvNet with 97.8% accuracy](svhn-digit-convnet.py)
+ [Inception-BN with 71% accuracy](Inception/inception-bn.py)
+ [InceptionV3 with 74% accuracy (similar to the official code)](Inception/inceptionv3.py)
+ [DoReFa-Net: binary / low-bitwidth CNN on ImageNet](DoReFa-Net) + [DoReFa-Net: binary / low-bitwidth CNN on ImageNet](DoReFa-Net)
+ [ResNet for ImageNet/Cifar10/SVHN](ResNet) + [ResNet for ImageNet/Cifar10/SVHN](ResNet)
+ [Holistically-Nested Edge Detection](HED) + [Inception-BN with 71% accuracy](Inception/inception-bn.py)
+ [InceptionV3 with 74% accuracy (similar to the official code)](Inception/inceptionv3.py)
+ [Fully-convolutional Network for Holistically-Nested Edge Detection(HED)](HED)
+ [Spatial Transformer Networks on MNIST addition](SpatialTransformer) + [Spatial Transformer Networks on MNIST addition](SpatialTransformer)
+ [Generative Adversarial Networks variants](GAN) + Load a pretrained [AlexNet](load-alexnet.py) or [VGG16](load-vgg16.py) model.
+ Reinforcement learning (DQN, A3C) on [Atari games](Atari2600) and [demos on OpenAI Gym](OpenAIGym).
## Reinforcement Learning:
+ [Deep Q-Network(DQN) variants on Atari games](Atari2600)
+ [Asynchronous Advantage Actor-Critic(A3C) with demos on OpenAI Gym](OpenAIGym)
## Unsupervised:
+ [Generative Adversarial Network(GAN) variants (DCGAN,Image2Image,InfoGAN)](examples/GAN)
## Speech / NLP:
+ [char-rnn for fun](char-rnn) + [char-rnn for fun](char-rnn)
...@@ -22,7 +22,7 @@ Identity Mappings in Deep Residual Networks, arxiv:1603.05027 ...@@ -22,7 +22,7 @@ Identity Mappings in Deep Residual Networks, arxiv:1603.05027
I can reproduce the results on 2 TitanX for I can reproduce the results on 2 TitanX for
n=5, about 7.1% val error after 67k steps (8.6 step/s) n=5, about 7.1% val error after 67k steps (8.6 step/s)
n=18, about 5.9% val error after 80k steps (2.6 step/s) n=18, about 5.95% val error after 80k steps (2.6 step/s)
n=30: a 182-layer network, about 5.6% val error after 51k steps (1.55 step/s) n=30: a 182-layer network, about 5.6% val error after 51k steps (1.55 step/s)
This model uses the whole training set instead of a train-val split. This model uses the whole training set instead of a train-val split.
""" """
......
...@@ -258,5 +258,6 @@ class StatMonitorParamSetter(HyperParamSetter): ...@@ -258,5 +258,6 @@ class StatMonitorParamSetter(HyperParamSetter):
if hist_max > hist_first + self.threshold: # large enough if hist_max > hist_first + self.threshold: # large enough
return None return None
self.last_changed_epoch = self.epoch_num self.last_changed_epoch = self.epoch_num
logger.info("[StatMonitorParamSetter] Triggered, history: " + ','.join(hist))
return self.value_func(self.get_current_value()) return self.value_func(self.get_current_value())
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment