Commit 130f60ac authored by Yuxin Wu's avatar Yuxin Wu

[FasterRCNN] update resnet101 results

parent 339f2173
...@@ -41,7 +41,7 @@ Predict on an image (and show output in a window): ...@@ -41,7 +41,7 @@ Predict on an image (and show output in a window):
``` ```
Evaluate the performance of a model and save to json. Evaluate the performance of a model and save to json.
(A pretrained model can be downloaded in [model zoo](http://models.tensorpack.com/FasterRCNN): (Pretrained models can be downloaded in [model zoo](http://models.tensorpack.com/FasterRCNN):
``` ```
./train.py --evaluate output.json --load /path/to/model ./train.py --evaluate output.json --load /path/to/model
``` ```
...@@ -57,8 +57,10 @@ MaskRCNN results contain both bbox and segm mAP. ...@@ -57,8 +57,10 @@ MaskRCNN results contain both bbox and segm mAP.
| Res50 | 256 | (600, 1024) | 34.4 | 49h on 8 TitanX | | Res50 | 256 | (600, 1024) | 34.4 | 49h on 8 TitanX |
| Res50 | 512 | (800, 1333) | 35.6 | 55h on 8 P100| | Res50 | 512 | (800, 1333) | 35.6 | 55h on 8 P100|
| Res50 | 512 | (800, 1333) | 36.9/32.3 | 59h on 8 P100| | Res50 | 512 | (800, 1333) | 36.9/32.3 | 59h on 8 P100|
| Res101 | 512 | (800, 1333) | 40.1/34.4 | 70h on 8 P100|
Note that these models are trained with a longer learning schedule than the paper. Note that these models are trained with a longer learning schedule than the paper,
and get about 1mAP better performance.
## Notes ## Notes
......
...@@ -5,22 +5,23 @@ ...@@ -5,22 +5,23 @@
import numpy as np import numpy as np
# mode flags --------------------- # mode flags ---------------------
MODE_MASK = False MODE_MASK = True
# dataset ----------------------- # dataset -----------------------
BASEDIR = '/path/to/your/COCO/DIR' BASEDIR = '/path/to/your/COCO/DIR'
TRAIN_DATASET = ['train2014', 'valminusminival2014'] TRAIN_DATASET = ['train2014', 'valminusminival2014']
VAL_DATASET = 'minival2014' # only support evaluation on one dataset VAL_DATASET = 'minival2014' # only support evaluation on single dataset
NUM_CLASS = 81 NUM_CLASS = 81
CLASS_NAMES = [] # NUM_CLASS strings CLASS_NAMES = [] # NUM_CLASS strings
# basemodel ---------------------- # basemodel ----------------------
RESNET_NUM_BLOCK = [3, 4, 6, 3] # resnet50 RESNET_NUM_BLOCK = [3, 4, 6, 3] # resnet50
# RESNET_NUM_BLOCK = [3, 4, 23, 3] # resnet101
# preprocessing -------------------- # preprocessing --------------------
SHORT_EDGE_SIZE = 600 SHORT_EDGE_SIZE = 800
MAX_SIZE = 1024 MAX_SIZE = 1333
# alternative (better) setting: 800, 1333 # alternative (worse & faster) setting: 600, 1024
# anchors ------------------------- # anchors -------------------------
ANCHOR_STRIDE = 16 ANCHOR_STRIDE = 16
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment