Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
S
seminar-breakout
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Shashank Suhas
seminar-breakout
Commits
0a6dd4ae
Commit
0a6dd4ae
authored
Aug 31, 2019
by
Yuxin Wu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add `self.training` to ModelDesc
parent
cb1419e8
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
31 additions
and
36 deletions
+31
-36
docs/tutorial/trainer.md
docs/tutorial/trainer.md
+10
-10
examples/A3C-Gym/train-atari.py
examples/A3C-Gym/train-atari.py
+1
-2
examples/CTC-TIMIT/train-timit.py
examples/CTC-TIMIT/train-timit.py
+1
-2
examples/DeepQNetwork/DQNModel.py
examples/DeepQNetwork/DQNModel.py
+2
-2
examples/DoReFa-Net/svhn-digit-dorefa.py
examples/DoReFa-Net/svhn-digit-dorefa.py
+1
-3
examples/FasterRCNN/modeling/generalized_rcnn.py
examples/FasterRCNN/modeling/generalized_rcnn.py
+0
-5
examples/PennTreebank/PTB-LSTM.py
examples/PennTreebank/PTB-LSTM.py
+1
-2
examples/SuperResolution/enet-pat.py
examples/SuperResolution/enet-pat.py
+1
-2
examples/basics/cifar-convnet.py
examples/basics/cifar-convnet.py
+2
-3
examples/basics/mnist-tflayers.py
examples/basics/mnist-tflayers.py
+2
-3
examples/basics/mnist-tfslim.py
examples/basics/mnist-tfslim.py
+1
-2
tensorpack/graph_builder/model_desc.py
tensorpack/graph_builder/model_desc.py
+9
-0
No files found.
docs/tutorial/trainer.md
View file @
0a6dd4ae
...
@@ -39,16 +39,16 @@ for epoch_num in range(starting_epoch, max_epoch):
...
@@ -39,16 +39,16 @@ for epoch_num in range(starting_epoch, max_epoch):
run_step
()
# do something
run_step
()
# do something
```
```
In other words, the assumptions are:
1.
Training is
**running some iterations**
.
1.
Training is
**running some iterations**
.
Tensorpack base trainer implements the logic of __running the iteration__.
Tensorpack base trainer implements the logic of __running the iteration
s
__.
Users or derived trainers should implement __what the iteration
is
__.
Users or derived trainers should implement __what the iteration
s are
__.
2.
T
rainer assumes the existence of __"epoch"__, i.e. that the iterations run in double
for-loops.
2.
T
he concept of __"epoch"__, i.e. we assume that the iterations run in nested
for-loops.
`steps_per_epoch`
can be any number you set
In fact, the steps per epoch can be any number
and it only affects the
[
schedule of callbacks
](
callback.html
)
.
and it only affects the
[
schedule of callbacks
](
callback.html
)
.
In other words, an "epoch" in tensorpack is the __default period to run
In other words, an "epoch" in tensorpack is the __default period to run
callbacks__ (validation, summary, checkpoint, etc.).
callbacks__ (validation, summary, checkpoint, etc.). It has nothing to do with your dataset.
It has nothing to do with your dataset.
### Built-in Trainers
### Built-in Trainers
...
@@ -76,8 +76,8 @@ It takes only one line of code change to use them, e.g. `trainer=SyncMultiGPUTra
...
@@ -76,8 +76,8 @@ It takes only one line of code change to use them, e.g. `trainer=SyncMultiGPUTra
Note some __common confusions__ when using these trainers:
Note some __common confusions__ when using these trainers:
1.
In each iteration, instead of taking one input tensor for all GPUs and split,
1.
In each iteration, instead of taking one input tensor for all GPUs and split,
all GPUs take tensors from the
`InputSource`
.
tensorpack trainers let all GPUs take tensors from the input
.
So the total batch size across all GPUs is
``(batch size of InputS
ource) * #GPU``
.
Therefore, the total batch size across all GPUs is
``(batch size of input s
ource) * #GPU``
.
You may want to change
`steps_per_epoch`
or learing rate appropriately according
You may want to change
`steps_per_epoch`
or learing rate appropriately according
to the total batch size.
to the total batch size.
...
@@ -92,11 +92,11 @@ Note some __common confusions__ when using these trainers:
...
@@ -92,11 +92,11 @@ Note some __common confusions__ when using these trainers:
```
```
2.
The tower function (your model code) will get called once on each GPU.
2.
The tower function (your model code) will get called once on each GPU.
Y
ou must follow some
[
rules of tower function
](
extend/trainer.html#rules-of-tower-function
)
.
So y
ou must follow some
[
rules of tower function
](
extend/trainer.html#rules-of-tower-function
)
.
### Distributed Trainers
### Distributed Trainers
Distributed training needs the
[
horovod
](
https://github.com/
uber
/horovod
)
library which offers high-performance allreduce implementation.
Distributed training needs the
[
horovod
](
https://github.com/
horovod
/horovod
)
library which offers high-performance allreduce implementation.
To run distributed training, first install horovod properly, then refer to the
To run distributed training, first install horovod properly, then refer to the
documentation of
[
HorovodTrainer
](
../modules/train.html#tensorpack.train.HorovodTrainer
)
.
documentation of
[
HorovodTrainer
](
../modules/train.html#tensorpack.train.HorovodTrainer
)
.
...
...
examples/A3C-Gym/train-atari.py
View file @
0a6dd4ae
...
@@ -100,8 +100,7 @@ class Model(ModelDesc):
...
@@ -100,8 +100,7 @@ class Model(ModelDesc):
logits
,
value
=
self
.
_get_NN_prediction
(
state
)
logits
,
value
=
self
.
_get_NN_prediction
(
state
)
value
=
tf
.
squeeze
(
value
,
[
1
],
name
=
'pred_value'
)
# (B,)
value
=
tf
.
squeeze
(
value
,
[
1
],
name
=
'pred_value'
)
# (B,)
policy
=
tf
.
nn
.
softmax
(
logits
,
name
=
'policy'
)
policy
=
tf
.
nn
.
softmax
(
logits
,
name
=
'policy'
)
is_training
=
get_current_tower_context
()
.
is_training
if
not
self
.
training
:
if
not
is_training
:
return
return
log_probs
=
tf
.
log
(
policy
+
1e-6
)
log_probs
=
tf
.
log
(
policy
+
1e-6
)
...
...
examples/CTC-TIMIT/train-timit.py
View file @
0a6dd4ae
...
@@ -55,8 +55,7 @@ class Model(ModelDesc):
...
@@ -55,8 +55,7 @@ class Model(ModelDesc):
logits
=
tf
.
transpose
(
logits
,
[
1
,
0
,
2
])
logits
=
tf
.
transpose
(
logits
,
[
1
,
0
,
2
])
isTrain
=
get_current_tower_context
()
.
is_training
if
self
.
training
:
if
isTrain
:
# beam search is too slow to run in training
# beam search is too slow to run in training
predictions
=
tf
.
cast
(
predictions
=
tf
.
cast
(
tf
.
nn
.
ctc_greedy_decoder
(
logits
,
seqlen
)[
0
][
0
],
tf
.
int32
)
tf
.
nn
.
ctc_greedy_decoder
(
logits
,
seqlen
)[
0
][
0
],
tf
.
int32
)
...
...
examples/DeepQNetwork/DQNModel.py
View file @
0a6dd4ae
...
@@ -6,7 +6,7 @@ import abc
...
@@ -6,7 +6,7 @@ import abc
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorpack
import
ModelDesc
from
tensorpack
import
ModelDesc
from
tensorpack.tfutils
import
g
et_current_tower_context
,
g
radproc
,
optimizer
,
summary
,
varreplace
from
tensorpack.tfutils
import
gradproc
,
optimizer
,
summary
,
varreplace
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.tfutils.scope_utils
import
auto_reuse_variable_scope
from
tensorpack.utils
import
logger
from
tensorpack.utils
import
logger
...
@@ -60,7 +60,7 @@ class Model(ModelDesc):
...
@@ -60,7 +60,7 @@ class Model(ModelDesc):
[
-
1
]
*
(
input_rank
-
1
)
+
[
self
.
history
],
name
=
'state'
)
[
-
1
]
*
(
input_rank
-
1
)
+
[
self
.
history
],
name
=
'state'
)
self
.
predict_value
=
self
.
get_DQN_prediction
(
state
)
self
.
predict_value
=
self
.
get_DQN_prediction
(
state
)
if
not
get_current_tower_context
()
.
is_
training
:
if
not
self
.
training
:
return
return
reward
=
tf
.
clip_by_value
(
reward
,
-
1
,
1
)
reward
=
tf
.
clip_by_value
(
reward
,
-
1
,
1
)
...
...
examples/DoReFa-Net/svhn-digit-dorefa.py
View file @
0a6dd4ae
...
@@ -45,8 +45,6 @@ class Model(ModelDesc):
...
@@ -45,8 +45,6 @@ class Model(ModelDesc):
tf
.
TensorSpec
([
None
],
tf
.
int32
,
'label'
)]
tf
.
TensorSpec
([
None
],
tf
.
int32
,
'label'
)]
def
build_graph
(
self
,
image
,
label
):
def
build_graph
(
self
,
image
,
label
):
is_training
=
get_current_tower_context
()
.
is_training
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
fw
,
fa
,
fg
=
get_dorefa
(
BITW
,
BITA
,
BITG
)
# monkey-patch tf.get_variable to apply fw
# monkey-patch tf.get_variable to apply fw
...
@@ -100,7 +98,7 @@ class Model(ModelDesc):
...
@@ -100,7 +98,7 @@ class Model(ModelDesc):
.
apply
(
fg
)
.
apply
(
fg
)
.
BatchNorm
(
'bn5'
)
.
apply
(
activate
)
.
BatchNorm
(
'bn5'
)
.
apply
(
activate
)
# 5
# 5
.
Dropout
(
rate
=
0.5
if
is_
training
else
0.0
)
.
Dropout
(
rate
=
0.5
if
self
.
training
else
0.0
)
.
Conv2D
(
'conv6'
,
512
,
5
,
padding
=
'VALID'
)
.
Conv2D
(
'conv6'
,
512
,
5
,
padding
=
'VALID'
)
.
apply
(
fg
)
.
BatchNorm
(
'bn6'
)
.
apply
(
fg
)
.
BatchNorm
(
'bn6'
)
.
apply
(
nonlin
)
.
apply
(
nonlin
)
...
...
examples/FasterRCNN/modeling/generalized_rcnn.py
View file @
0a6dd4ae
...
@@ -7,7 +7,6 @@ from tensorpack import ModelDesc
...
@@ -7,7 +7,6 @@ from tensorpack import ModelDesc
from
tensorpack.models
import
GlobalAvgPooling
,
l2_regularizer
,
regularize_cost
from
tensorpack.models
import
GlobalAvgPooling
,
l2_regularizer
,
regularize_cost
from
tensorpack.tfutils
import
optimizer
from
tensorpack.tfutils
import
optimizer
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.tfutils.summary
import
add_moving_summary
from
tensorpack.tfutils.tower
import
get_current_tower_context
from
config
import
config
as
cfg
from
config
import
config
as
cfg
from
data
import
get_all_anchors
,
get_all_anchors_fpn
from
data
import
get_all_anchors
,
get_all_anchors_fpn
...
@@ -31,10 +30,6 @@ class GeneralizedRCNN(ModelDesc):
...
@@ -31,10 +30,6 @@ class GeneralizedRCNN(ModelDesc):
image
=
image_preprocess
(
image
,
bgr
=
True
)
image
=
image_preprocess
(
image
,
bgr
=
True
)
return
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
return
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
@
property
def
training
(
self
):
return
get_current_tower_context
()
.
is_training
def
optimizer
(
self
):
def
optimizer
(
self
):
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.003
,
trainable
=
False
)
lr
=
tf
.
get_variable
(
'learning_rate'
,
initializer
=
0.003
,
trainable
=
False
)
tf
.
summary
.
scalar
(
'learning_rate-summary'
,
lr
)
tf
.
summary
.
scalar
(
'learning_rate-summary'
,
lr
)
...
...
examples/PennTreebank/PTB-LSTM.py
View file @
0a6dd4ae
...
@@ -50,12 +50,11 @@ class Model(ModelDesc):
...
@@ -50,12 +50,11 @@ class Model(ModelDesc):
tf
.
TensorSpec
((
None
,
SEQ_LEN
),
tf
.
int32
,
'nextinput'
)]
tf
.
TensorSpec
((
None
,
SEQ_LEN
),
tf
.
int32
,
'nextinput'
)]
def
build_graph
(
self
,
input
,
nextinput
):
def
build_graph
(
self
,
input
,
nextinput
):
is_training
=
get_current_tower_context
()
.
is_training
initializer
=
tf
.
random_uniform_initializer
(
-
0.05
,
0.05
)
initializer
=
tf
.
random_uniform_initializer
(
-
0.05
,
0.05
)
def
get_basic_cell
():
def
get_basic_cell
():
cell
=
rnn
.
BasicLSTMCell
(
num_units
=
HIDDEN_SIZE
,
forget_bias
=
0.0
,
reuse
=
tf
.
get_variable_scope
()
.
reuse
)
cell
=
rnn
.
BasicLSTMCell
(
num_units
=
HIDDEN_SIZE
,
forget_bias
=
0.0
,
reuse
=
tf
.
get_variable_scope
()
.
reuse
)
if
is_
training
:
if
self
.
training
:
cell
=
rnn
.
DropoutWrapper
(
cell
,
output_keep_prob
=
1
-
DROPOUT
)
cell
=
rnn
.
DropoutWrapper
(
cell
,
output_keep_prob
=
1
-
DROPOUT
)
return
cell
return
cell
...
...
examples/SuperResolution/enet-pat.py
View file @
0a6dd4ae
...
@@ -55,7 +55,6 @@ class Model(GANModelDesc):
...
@@ -55,7 +55,6 @@ class Model(GANModelDesc):
def
build_graph
(
self
,
Ilr
,
Ihr
):
def
build_graph
(
self
,
Ilr
,
Ihr
):
Ilr
,
Ihr
=
Ilr
/
255.0
,
Ihr
/
255.0
Ilr
,
Ihr
=
Ilr
/
255.0
,
Ihr
/
255.0
ctx
=
get_current_tower_context
()
Ibicubic
=
tf
.
image
.
resize_bicubic
(
Ibicubic
=
tf
.
image
.
resize_bicubic
(
Ilr
,
[
4
*
self
.
height
,
4
*
self
.
width
],
align_corners
=
True
,
Ilr
,
[
4
*
self
.
height
,
4
*
self
.
width
],
align_corners
=
True
,
name
=
'bicubic_baseline'
)
# (0,1)
name
=
'bicubic_baseline'
)
# (0,1)
...
@@ -182,7 +181,7 @@ class Model(GANModelDesc):
...
@@ -182,7 +181,7 @@ class Model(GANModelDesc):
tf
.
multiply
(
fake_hr
,
255.0
,
name
=
'prediction'
)
tf
.
multiply
(
fake_hr
,
255.0
,
name
=
'prediction'
)
if
ctx
.
is_
training
:
if
self
.
training
:
with
tf
.
variable_scope
(
'discrim'
):
with
tf
.
variable_scope
(
'discrim'
):
real_score
=
discriminator
(
real_hr
)
real_score
=
discriminator
(
real_hr
)
fake_score
=
discriminator
(
fake_hr
)
fake_score
=
discriminator
(
fake_hr
)
...
...
examples/basics/cifar-convnet.py
View file @
0a6dd4ae
...
@@ -33,10 +33,9 @@ class Model(ModelDesc):
...
@@ -33,10 +33,9 @@ class Model(ModelDesc):
tf
.
TensorSpec
((
None
,),
tf
.
int32
,
'label'
)]
tf
.
TensorSpec
((
None
,),
tf
.
int32
,
'label'
)]
def
build_graph
(
self
,
image
,
label
):
def
build_graph
(
self
,
image
,
label
):
is_training
=
get_current_tower_context
()
.
is_training
drop_rate
=
tf
.
constant
(
0.5
if
self
.
training
else
0.0
)
drop_rate
=
tf
.
constant
(
0.5
if
is_training
else
0.0
)
if
is_
training
:
if
self
.
training
:
tf
.
summary
.
image
(
"train_image"
,
image
,
10
)
tf
.
summary
.
image
(
"train_image"
,
image
,
10
)
if
tf
.
test
.
is_gpu_available
():
if
tf
.
test
.
is_gpu_available
():
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
image
=
tf
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
...
...
examples/basics/mnist-tflayers.py
View file @
0a6dd4ae
...
@@ -6,7 +6,7 @@ import tensorflow as tf
...
@@ -6,7 +6,7 @@ import tensorflow as tf
from
tensorpack
import
*
from
tensorpack
import
*
from
tensorpack.dataflow
import
dataset
from
tensorpack.dataflow
import
dataset
from
tensorpack.tfutils
import
get_current_tower_context
,
summary
from
tensorpack.tfutils
import
summary
"""
"""
MNIST ConvNet example using tf.layers
MNIST ConvNet example using tf.layers
...
@@ -50,8 +50,7 @@ class Model(ModelDesc):
...
@@ -50,8 +50,7 @@ class Model(ModelDesc):
l
=
tf
.
layers
.
conv2d
(
l
,
32
,
3
,
name
=
'conv3'
)
l
=
tf
.
layers
.
conv2d
(
l
,
32
,
3
,
name
=
'conv3'
)
l
=
tf
.
layers
.
flatten
(
l
)
l
=
tf
.
layers
.
flatten
(
l
)
l
=
tf
.
layers
.
dense
(
l
,
512
,
activation
=
tf
.
nn
.
relu
,
name
=
'fc0'
)
l
=
tf
.
layers
.
dense
(
l
,
512
,
activation
=
tf
.
nn
.
relu
,
name
=
'fc0'
)
l
=
tf
.
layers
.
dropout
(
l
,
rate
=
0.5
,
l
=
tf
.
layers
.
dropout
(
l
,
rate
=
0.5
,
training
=
self
.
training
)
training
=
get_current_tower_context
()
.
is_training
)
logits
=
tf
.
layers
.
dense
(
l
,
10
,
activation
=
tf
.
identity
,
name
=
'fc1'
)
logits
=
tf
.
layers
.
dense
(
l
,
10
,
activation
=
tf
.
identity
,
name
=
'fc1'
)
# a vector of length B with loss of each sample
# a vector of length B with loss of each sample
...
...
examples/basics/mnist-tfslim.py
View file @
0a6dd4ae
...
@@ -30,7 +30,6 @@ class Model(ModelDesc):
...
@@ -30,7 +30,6 @@ class Model(ModelDesc):
image
=
image
*
2
-
1
image
=
image
*
2
-
1
is_training
=
get_current_tower_context
()
.
is_training
with
slim
.
arg_scope
([
slim
.
layers
.
fully_connected
],
with
slim
.
arg_scope
([
slim
.
layers
.
fully_connected
],
weights_regularizer
=
slim
.
l2_regularizer
(
1e-5
)):
weights_regularizer
=
slim
.
l2_regularizer
(
1e-5
)):
l
=
slim
.
layers
.
conv2d
(
image
,
32
,
[
3
,
3
],
scope
=
'conv0'
)
l
=
slim
.
layers
.
conv2d
(
image
,
32
,
[
3
,
3
],
scope
=
'conv0'
)
...
@@ -41,7 +40,7 @@ class Model(ModelDesc):
...
@@ -41,7 +40,7 @@ class Model(ModelDesc):
l
=
slim
.
layers
.
conv2d
(
l
,
32
,
[
3
,
3
],
scope
=
'conv3'
)
l
=
slim
.
layers
.
conv2d
(
l
,
32
,
[
3
,
3
],
scope
=
'conv3'
)
l
=
slim
.
layers
.
flatten
(
l
,
scope
=
'flatten'
)
l
=
slim
.
layers
.
flatten
(
l
,
scope
=
'flatten'
)
l
=
slim
.
layers
.
fully_connected
(
l
,
512
,
scope
=
'fc0'
)
l
=
slim
.
layers
.
fully_connected
(
l
,
512
,
scope
=
'fc0'
)
l
=
slim
.
layers
.
dropout
(
l
,
is_training
=
is_
training
)
l
=
slim
.
layers
.
dropout
(
l
,
is_training
=
self
.
training
)
logits
=
slim
.
layers
.
fully_connected
(
l
,
10
,
activation_fn
=
None
,
scope
=
'fc1'
)
logits
=
slim
.
layers
.
fully_connected
(
l
,
10
,
activation_fn
=
None
,
scope
=
'fc1'
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
cost
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
logits
=
logits
,
labels
=
label
)
...
...
tensorpack/graph_builder/model_desc.py
View file @
0a6dd4ae
...
@@ -7,6 +7,7 @@ import tensorflow as tf
...
@@ -7,6 +7,7 @@ import tensorflow as tf
from
..utils.argtools
import
memoized_method
from
..utils.argtools
import
memoized_method
from
..tfutils.common
import
get_op_tensor_name
from
..tfutils.common
import
get_op_tensor_name
from
..tfutils.tower
import
get_current_tower_context
from
..compat
import
backport_tensor_spec
,
tfv1
from
..compat
import
backport_tensor_spec
,
tfv1
TensorSpec
=
backport_tensor_spec
()
TensorSpec
=
backport_tensor_spec
()
...
@@ -137,6 +138,14 @@ class ModelDescBase(object):
...
@@ -137,6 +138,14 @@ class ModelDescBase(object):
"""
"""
raise
NotImplementedError
()
raise
NotImplementedError
()
@
property
def
training
(
self
):
"""
Returns:
bool: whether the caller is under a training context or not.
"""
return
get_current_tower_context
()
.
is_training
class
ModelDesc
(
ModelDescBase
):
class
ModelDesc
(
ModelDescBase
):
"""
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment